Results 1  10
of
34
A Linear Logical Framework
, 1996
"... We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF c ..."
Abstract

Cited by 217 (44 self)
 Add to MetaCart
We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF combines the expressive power of dependent types with linear logic to permit the natural and concise representation of a whole new class of deductive systems, namely those dealing with state. As an example we encode a version of MiniML with references including its type system, its operational semantics, and a proof of type preservation. Another example is the encoding of a sequent calculus for classical linear logic and its cut elimination theorem. LLF can also be given an operational interpretation as a logic programming language under which the representations above can be used for type inference, evaluation and cutelimination. 1 Introduction A logical framework is a formal system desig...
Reasoning with higherorder abstract syntax in a logical framework
 ACM Transactions on Computational Logic
, 2002
"... Logical frameworks based on intuitionistic or linear logics with highertype quantification have been successfully used to give highlevel, modular, and formal specifications of many important judgments in the area of programming languages and inference systems. Given such specifications, it is natu ..."
Abstract

Cited by 90 (23 self)
 Add to MetaCart
Logical frameworks based on intuitionistic or linear logics with highertype quantification have been successfully used to give highlevel, modular, and formal specifications of many important judgments in the area of programming languages and inference systems. Given such specifications, it is natural to consider proving properties about the specified systems in the framework: for example, given the specification of evaluation for a functional programming language, prove that the language is deterministic or that evaluation preserves types. One challenge in developing a framework for such reasoning is that higherorder abstract syntax (HOAS), an elegant and declarative treatment of objectlevel abstraction and substitution, is difficult to treat in proofs involving induction. In this paper, we present a metalogic that can be used to reason about judgments coded using HOAS; this metalogic is an extension of a simple intuitionistic logic that admits higherorder quantification over simply typed λterms (key ingredients for HOAS) as well as induction and a notion of definition. The latter concept of definition is a prooftheoretic device that allows certain theories to be treated as “closed ” or as defining fixed points. We explore the difficulties of formal metatheoretic analysis of HOAS encodings by considering encodings of intuitionistic and linear logics, and formally derive the admissibility of cut for important subsets
Forum: A multipleconclusion specification logic
 Theoretical Computer Science
, 1996
"... The theory of cutfree sequent proofs has been used to motivate and justify the design of a number of logic programming languages. Two such languages, λProlog and its linear logic refinement, Lolli [15], provide for various forms of abstraction (modules, abstract data types, and higherorder program ..."
Abstract

Cited by 85 (11 self)
 Add to MetaCart
The theory of cutfree sequent proofs has been used to motivate and justify the design of a number of logic programming languages. Two such languages, λProlog and its linear logic refinement, Lolli [15], provide for various forms of abstraction (modules, abstract data types, and higherorder programming) but lack primitives for concurrency. The logic programming language, LO (Linear Objects) [2] provides some primitives for concurrency but lacks abstraction mechanisms. In this paper we present Forum, a logic programming presentation of all of linear logic that modularly extends λProlog, Lolli, and LO. Forum, therefore, allows specifications to incorporate both abstractions and concurrency. To illustrate the new expressive strengths of Forum, we specify in it a sequent calculus proof system and the operational semantics of a programming language that incorporates references and concurrency. We also show that the meta theory of linear logic can be used to prove properties of the objectlanguages specified in Forum.
A concurrent logical framework I: Judgments and properties
, 2003
"... The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous con ..."
Abstract

Cited by 73 (25 self)
 Add to MetaCart
The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous connectives# of intuitionistic linear logic, encapsulated in a monad. LLF is itself a conservative extension of LF with the asynchronous connectives #, & and #.
Cutelimination for a logic with definitions and induction
 Theoretical Computer Science
, 1997
"... In order to reason about specifications of computations that are given via the proof search or logic programming paradigm one needs to have at least some forms of induction and some principle for reasoning about the ways in which terms are built and the ways in which computations can progress. The l ..."
Abstract

Cited by 61 (19 self)
 Add to MetaCart
In order to reason about specifications of computations that are given via the proof search or logic programming paradigm one needs to have at least some forms of induction and some principle for reasoning about the ways in which terms are built and the ways in which computations can progress. The literature contains many approaches to formally adding these reasoning principles with logic specifications. We choose an approach based on the sequent calculus and design an intuitionistic logic F Oλ ∆IN that includes natural number induction and a notion of definition. We have detailed elsewhere that this logic has a number of applications. In this paper we prove the cutelimination theorem for F Oλ ∆IN, adapting a technique due to Tait and MartinLöf. This cutelimination proof is technically interesting and significantly extends previous results of this kind. 1
A Proof Theory for Generic Judgments
, 2003
"... this paper, we do this by adding the #quantifier: its role will be to declare variables to be new and of local scope. The syntax of the formula # x.B is like that for the universal and existential quantifiers. Following Church's Simple Theory of Types [Church 1940], formulas are given the type ..."
Abstract

Cited by 61 (14 self)
 Add to MetaCart
this paper, we do this by adding the #quantifier: its role will be to declare variables to be new and of local scope. The syntax of the formula # x.B is like that for the universal and existential quantifiers. Following Church's Simple Theory of Types [Church 1940], formulas are given the type o, and for all types # not containing o, # is a constant of type (# o) o. The expression # #x.B is ACM Transactions on Computational Logic, Vol. V, No. N, October 2003. 4 usually abbreviated as simply # x.B or as if the type information is either simple to infer or not important
A proof theory for generic judgments: An extended abstract
 In LICS 2003
, 2003
"... A powerful and declarative means of specifying computations containing abstractions involves metalevel, universally quantified generic judgments. We present a proof theory for such judgments in which signatures are associated to each sequent (used to account for eigenvariables of the sequent) and t ..."
Abstract

Cited by 41 (15 self)
 Add to MetaCart
A powerful and declarative means of specifying computations containing abstractions involves metalevel, universally quantified generic judgments. We present a proof theory for such judgments in which signatures are associated to each sequent (used to account for eigenvariables of the sequent) and to each formula in the sequent (used to account for generic variables locally scoped over the formula). A new quantifier, ∇, is introduced to explicitly manipulate the local signature. Intuitionistic logic extended with ∇ satisfies cutelimination even when the logic is additionally strengthened with a proof theoretic notion of definitions. The resulting logic can be used to encode naturally a number of examples involving name abstractions, and we illustrate using the πcalculus and the encoding of objectlevel provability.
Encoding Transition Systems in Sequent Calculus
 Theoretical Computer Science
, 1996
"... Intuitionistic and linear logics can be used to specify the operational semantics of transition systems in various ways. We consider here two encodings: one uses linear logic and maps states of the transition system into formulas, and the other uses intuitionistic logic and maps states into terms. I ..."
Abstract

Cited by 33 (10 self)
 Add to MetaCart
Intuitionistic and linear logics can be used to specify the operational semantics of transition systems in various ways. We consider here two encodings: one uses linear logic and maps states of the transition system into formulas, and the other uses intuitionistic logic and maps states into terms. In both cases, it is possible to relate transition paths to proofs in sequent calculus. In neither encoding, however, does it seem possible to capture properties, such as simulation and bisimulation, that need to consider all possible transitions or all possible computation paths. We consider augmenting both intuitionistic and linear logics with a proof theoretical treatment of definitions. In both cases, this addition allows proving various judgments concerning simulation and bisimulation (especially for noetherian transition systems). We also explore the use of infinite proofs to reason about infinite sequences of transitions. Finally, combining definitions and induction into sequent calculus proofs makes it possible to reason more richly about properties of transition systems completely within the formal setting of sequent calculus.
A Logical Framework For Reasoning About Logical Specifications
, 2004
"... We present a new logic, Linc, which is designed to be used as a framework for specifying and reasoning about operational semantics. Linc is an extension of firstorder intuitionistic logic with a proof theoretic notion of definitions, induction and coinduction, and a new quantifier #. ..."
Abstract

Cited by 33 (12 self)
 Add to MetaCart
We present a new logic, Linc, which is designed to be used as a framework for specifying and reasoning about operational semantics. Linc is an extension of firstorder intuitionistic logic with a proof theoretic notion of definitions, induction and coinduction, and a new quantifier #.