Results 1  10
of
161
Winner determination in combinatorial auction generalizations
, 2002
"... Combinatorial markets where bids can be submitted on bundles of items can be economically desirable coordination mechanisms in multiagent systems where the items exhibit complementarity and substitutability. There has been a surge of recent research on winner determination in combinatorial auctions. ..."
Abstract

Cited by 175 (23 self)
 Add to MetaCart
Combinatorial markets where bids can be submitted on bundles of items can be economically desirable coordination mechanisms in multiagent systems where the items exhibit complementarity and substitutability. There has been a surge of recent research on winner determination in combinatorial auctions. In this paper we study a wider range of combinatorial market designs: auctions, reverse auctions, and exchanges, with one or multiple units of each item, with and without free disposal. We first theoretically characterize the complexity. The most interesting results are that reverse auctions with free disposal can be approximated, and in all of the cases without free disposal, even finding a feasible solution is ÆÈcomplete. We then ran experiments on known benchmarks as well as ones which we introduced, to study the complexity of the market variants in practice. Cases with free disposal tended to be easier than ones without. On many distributions, reverse auctions with free disposal were easier than auctions with free disposal— as the approximability would suggest—but interestingly, on one of the most realistic distributions they were harder. Singleunit exchanges were easy, but multiunit exchanges were extremely hard. 1
CABOB: A fast optimal algorithm for combinatorial auctions
"... Combinatorial auctions where bidders can bid on bundles of items can lead to more economical allocations, but determining the winners iscomplete and inapproximable. We present CABOB, a sophisticated search algorithm for the problem. It uses decomposition techniques, upper and lower bounding (also a ..."
Abstract

Cited by 137 (26 self)
 Add to MetaCart
Combinatorial auctions where bidders can bid on bundles of items can lead to more economical allocations, but determining the winners iscomplete and inapproximable. We present CABOB, a sophisticated search algorithm for the problem. It uses decomposition techniques, upper and lower bounding (also across components), elaborate and dynamically chosen bid ordering heuristics, and a host of structural observations. Experiments against CPLEX 7.0 show that CABOB is usually faster, never drastically slower, and in many cases drastically faster. We also uncover interesting aspects of the problem itself. First, the problems with short bids that were hard for the firstgeneration of specialized algorithms are easy. Second, almost all of the CATS distributions are easy, and become easier with more bids. Third, we test a number of random restart strategies, and show that they do not help on this problem because the runtime distribution does not have a heavy tail (at least not for CABOB). 1
Sequential ModelBased Optimization for General Algorithm Configuration (extended version)
"... Abstract. Stateoftheart algorithms for hard computational problems often expose many parameters that can be modified to improve empirical performance. However, manually exploring the resulting combinatorial space of parameter settings is tedious and tends to lead to unsatisfactory outcomes. Recen ..."
Abstract

Cited by 107 (27 self)
 Add to MetaCart
(Show Context)
Abstract. Stateoftheart algorithms for hard computational problems often expose many parameters that can be modified to improve empirical performance. However, manually exploring the resulting combinatorial space of parameter settings is tedious and tends to lead to unsatisfactory outcomes. Recently, automated approaches for solving this algorithm configuration problem have led to substantial improvements in the state of the art for solving various problems. One promising approach constructs explicit regression models to describe the dependence of target algorithm performance on parameter settings; however, this approach has so far been limited to the optimization of few numerical algorithm parameters on single instances. In this paper, we extend this paradigm for the first time to general algorithm configuration problems, allowing many categorical parameters and optimization for sets of instances. We experimentally validate our new algorithm configuration procedure by optimizing a local search and a tree search solver for the propositional satisfiability problem (SAT), as well as the commercial mixed integer programming (MIP) solver CPLEX. In these experiments, our procedure yielded stateoftheart performance, and in many cases outperformed the previous best configuration approach. 1
Learning the Empirical Hardness of Optimization Problems: The case of combinatorial auctions
 In CP
, 2002
"... We propose a new approach to understanding the algorithmspecific empirical hardness of optimization problems. In this work we focus on the empirical hardness of the winner determination probleman optimization problem arising in combinatorial auctionswhen solved by ILOG's CPLEX software. ..."
Abstract

Cited by 78 (23 self)
 Add to MetaCart
(Show Context)
We propose a new approach to understanding the algorithmspecific empirical hardness of optimization problems. In this work we focus on the empirical hardness of the winner determination probleman optimization problem arising in combinatorial auctionswhen solved by ILOG's CPLEX software. We consider nine widelyused problem distributions and sample randomly from a continuum of parameter settings for each distribution. First, we contrast the overall empirical hardness of the different distributions. Second, we identify a large number of distributionnonspecific features of data instances and use statistical regression techniques to learn, evaluate and interpret a function from these features to the predicted hardness of an instance.
CABOB: A Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions
, 2005
"... Combinatorial auctions where bidders can bid on bundles of items can lead to more economically efficient allocations, but determining the winners is NPcomplete and inapproximable. We present CABOB, a sophisticated optimal search algorithm for the problem. It uses decomposition techniques, upper and ..."
Abstract

Cited by 55 (6 self)
 Add to MetaCart
Combinatorial auctions where bidders can bid on bundles of items can lead to more economically efficient allocations, but determining the winners is NPcomplete and inapproximable. We present CABOB, a sophisticated optimal search algorithm for the problem. It uses decomposition techniques, upper and lower bounding (also across components), elaborate and dynamically chosen bidordering heuristics, and a host of structural observations. CABOB attempts to capture structure in any instance without making assumptions about the instance distribution. Experiments against the fastest prior algorithm, CPLEX 8.0, show that CABOB is often faster, seldom drastically slower, and in many cases drastically faster—especially in cases with structure. CABOB’s search runs in linear space and has significantly better anytime performance than CPLEX. We also uncover interesting aspects of the problem itself. First, problems with short bids, which were hard for the first generation of specialized algorithms, are easy. Second, almost all of the CATS distributions are easy, and the run time is virtually unaffected by the number of goods. Third, we test several random restart strategies, showing that they do not help on this problem—the runtime distribution does not have a heavy tail.
A Portfolio Approach to Algorithm Selection
 In IJCAI03
, 2003
"... this paper describes a technique for using rejection sampling to automatically generate such instances. In Figures 4 and 5 we show how our techniques are able to automatically skew two of the easiest CATS instance distributions towards harder regions. In fact, for these two distributions we generate ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
(Show Context)
this paper describes a technique for using rejection sampling to automatically generate such instances. In Figures 4 and 5 we show how our techniques are able to automatically skew two of the easiest CATS instance distributions towards harder regions. In fact, for these two distributions we generated instances that were (respectively) 100 and 50 times harder than anything we had previously seen! Moreover, the average runtime for the new distributions was greater than the observed maximum running time on the original distribution
Mdpop: Faithful distributed implementation of efficient social choice problems
 In AAMAS’06  Autonomous Agents and Multiagent Systems
, 2006
"... In the efficient social choice problem, the goal is to assign values, subject to side constraints, to a set of variables to maximize the total utility across a population of agents, where each agent has private information about its utility function. In this paper we model the social choice problem ..."
Abstract

Cited by 48 (17 self)
 Add to MetaCart
(Show Context)
In the efficient social choice problem, the goal is to assign values, subject to side constraints, to a set of variables to maximize the total utility across a population of agents, where each agent has private information about its utility function. In this paper we model the social choice problem as a distributed constraint optimization problem (DCOP), in which each agent can communicate with other agents that share an interest in one or more variables. Whereas existing DCOP algorithms can be easily manipulated by an agent, either by misreporting private information or deviating from the algorithm, we introduce MDPOP, the first DCOP algorithm that provides a faithful distributed implementation for efficient social choice. This provides a concrete example of how the methods of mechanism design can be unified with those of distributed optimization. Faithfulness ensures that no agent can benefit by unilaterally deviating from any aspect of the protocol, neither informationrevelation, computation, nor communication, and whatever the private information of other agents. We allow for payments by agents to a central bank, which is the only central authority that we require. To achieve faithfulness, we carefully integrate the VickreyClarkeGroves (VCG) mechanism with the DPOP algorithm, such that each agent is only asked to perform computation, report
Decentralized supply chain formation: A market protocol and competitive equilibrium analysis
 Journal of Artificial Intelligence Research
, 2003
"... Supply chain formation is the process of determining the structure and terms of exchange relationships to enable a multilevel, multiagent production activity. We present a simple model of supply chains, highlighting two characteristic features: hierarchical subtask decomposition, and resource conten ..."
Abstract

Cited by 45 (4 self)
 Add to MetaCart
(Show Context)
Supply chain formation is the process of determining the structure and terms of exchange relationships to enable a multilevel, multiagent production activity. We present a simple model of supply chains, highlighting two characteristic features: hierarchical subtask decomposition, and resource contention. To decentralize the formation process, we introduce a market price system over the resources produced along the chain. In a competitive equilibrium for this system, agents choose locally optimal allocations with respect to prices, and outcomes are optimal overall. To determine prices, we define a market protocol based on distributed, progressive auctions, and myopic, nonstrategic agent bidding policies. In the presence of resource contention, this protocol produces better solutions than the greedy protocols common in the artificial intelligence and multiagent systems literature. The protocol often converges to highvalue supply chains, and when competitive equilibria exist, typically to approximate competitive equilibria. However, complementarities in agent production technologies can cause the protocol to wastefully allocate inputs to agents that do not produce their outputs. A subsequent decommitment phase recovers a significant fraction of the lost surplus. 1.
The Exponentiated Subgradient Algorithm for Heuristic Boolean Programming
 IN PROC. IJCAI01
, 2001
"... Boolean linear programs (BLPs) are ubiquitous in AI. Satisfiability testing, planning with resource constraints, and winner determination in combinatorial auctions are all examples of this type of problem. Although increasingly wellinformed by work in OR, current AI research has tended to focu ..."
Abstract

Cited by 44 (2 self)
 Add to MetaCart
Boolean linear programs (BLPs) are ubiquitous in AI. Satisfiability testing, planning with resource constraints, and winner determination in combinatorial auctions are all examples of this type of problem. Although increasingly wellinformed by work in OR, current AI research has tended to focus on specialized algorithms for each type of BLP task and has only loosely patterned new algorithms on effective methods from other tasks. In this paper we introduce a single generalpurpose local search procedure that can be simultaneously applied to the entire range of BLP problems, without modification. Although one might suspect that a generalpurpose algorithm might not perform as well as specialized algorithms, we find that this is not the case here. Our experiments show that our generic algorithm simultaneously achieves performance comparable with the state of the art in satisfiability search and winner determination in combinatorial auctions two very different BLP problems. Our algorithm is simple, and combines an old idea from OR with recent ideas from AI.
ISAC  InstanceSpecific Algorithm Configuration
"... We present a new method for instancespecific algorithm configuration (ISAC). It is based on the integration of the algorithm configuration system GGA and the recently proposed stochastic offline programming paradigm. ISAC is provided a solver with categorical, ordinal, and/or continuous parameter ..."
Abstract

Cited by 41 (8 self)
 Add to MetaCart
(Show Context)
We present a new method for instancespecific algorithm configuration (ISAC). It is based on the integration of the algorithm configuration system GGA and the recently proposed stochastic offline programming paradigm. ISAC is provided a solver with categorical, ordinal, and/or continuous parameters, a training benchmark set of input instances for that solver, and an algorithm that computes a feature vector that characterizes any given instance. ISAC then provides high quality parameter settings for any new input instance. Experiments on a variety of different constrained optimization and constraint satisfaction solvers show that automatic algorithm configuration vastly outperforms manual tuning. Moreover, we show that instancespecific tuning frequently leads to significant speedups over instanceoblivious configurations.