Results 1  10
of
14
Combinatorial Principles Weaker than Ramsey's Theorem for Pairs
"... We investigate the complexity of various combinatorial theorems about linear and partial orders, from the points of view of computability theory and reverse mathematics. We focus in particular on the principles ADS (Ascending or Descending Sequence), which states that every infinite linear order ha ..."
Abstract

Cited by 26 (7 self)
 Add to MetaCart
We investigate the complexity of various combinatorial theorems about linear and partial orders, from the points of view of computability theory and reverse mathematics. We focus in particular on the principles ADS (Ascending or Descending Sequence), which states that every infinite linear order has either an infinite descending sequence or an infinite ascending sequence, and CAC (ChainAntiChain), which states that every infinite partial order has either an infinite chain or an infinite antichain. It is wellknown that Ramsey's Theorem for pairs (RT
Uniform almost everywhere domination
 Journal of Symbolic Logic
, 2006
"... ABSTRACT. We explore the interaction between Lebesgue measure and dominating functions. We show, via both a priority construction and a forcing construction, that there is a function of incomplete degree that dominates almost all degrees. This answers a question of Dobrinen and Simpson, who showed t ..."
Abstract

Cited by 25 (1 self)
 Add to MetaCart
ABSTRACT. We explore the interaction between Lebesgue measure and dominating functions. We show, via both a priority construction and a forcing construction, that there is a function of incomplete degree that dominates almost all degrees. This answers a question of Dobrinen and Simpson, who showed that such functions are related to the prooftheoretic strength of the regularity of Lebesgue measure for G δ sets. Our constructions essentially settle the reverse mathematical classification of this principle. 1.
An extension of the recursively enumerable Turing degrees
 Journal of the London Mathematical Society
, 2006
"... Consider the countable semilattice RT consisting of the recursively enumerable Turing degrees. Although RT is known to be structurally rich, a major source of frustration is that no specific, natural degrees in RT have been discovered, except the bottom and top degrees, 0 and 0 ′. In order to overco ..."
Abstract

Cited by 22 (16 self)
 Add to MetaCart
Consider the countable semilattice RT consisting of the recursively enumerable Turing degrees. Although RT is known to be structurally rich, a major source of frustration is that no specific, natural degrees in RT have been discovered, except the bottom and top degrees, 0 and 0 ′. In order to overcome this difficulty, we embed RT into a larger degree structure which is better behaved. Namely, consider the countable distributive lattice Pw consisting of the weak degrees (also known as Muchnik degrees) of mass problems associated with nonempty Π 0 1 subsets of 2ω. It is known that Pw contains a bottom degree 0 and a top degree 1 and is structurally rich. Moreover, Pw contains many specific, natural degrees other than 0 and 1. In particular, we show that in Pw one has 0 < d < r1 < inf(r2, 1) < 1. Here, d is the weak degree of the diagonally nonrecursive functions, and rn is the weak degree of the nrandom reals. It is known that r1 can be characterized as the maximum weak degree ofaΠ 0 1 subset of 2ω of positive measure. We now show that inf(r2, 1) can be characterized as the maximum weak degree of a Π 0 1 subset of 2ω, the Turing upward closure of which is of positive measure. We exhibit a natural embedding of RT into Pw which is onetoone, preserves the semilattice structure of RT, carries 0 to 0, and carries 0 ′ to 1. Identifying RT with its image in Pw, we show that all of the degrees in RT except 0 and 1 are incomparable with the specific degrees d, r1, and inf(r2, 1) inPw. 1.
Some fundamental issues concerning degrees of unsolvability
 In [6], 2005. Preprint
, 2007
"... Recall that RT is the upper semilattice of recursively enumerable Turing degrees. We consider two fundamental, classical, unresolved issues concerning RT. The first issue is to find a specific, natural, recursively enumerable Turing degree a ∈ RT which is> 0 and < 0 ′. The second issue is to f ..."
Abstract

Cited by 9 (8 self)
 Add to MetaCart
Recall that RT is the upper semilattice of recursively enumerable Turing degrees. We consider two fundamental, classical, unresolved issues concerning RT. The first issue is to find a specific, natural, recursively enumerable Turing degree a ∈ RT which is> 0 and < 0 ′. The second issue is to find a “smallness property ” of an infinite, corecursively enumerable set A ⊆ ω which ensures that the Turing degree deg T (A) = a ∈ RT is> 0 and < 0 ′. In order to address these issues, we embed RT into a slightly larger degree structure, Pw, which is much better behaved. Namely, Pw is the lattice of weak degrees of mass problems associated with nonempty Π 0 1 subsets of 2 ω. We define a specific, natural embedding of RT into Pw, and we present some recent and new research results.
Separation and weak König’s lemma
 Journal of Symbolic Logic
, 1999
"... investigating the strength of set existence axioms needed for separable Banach space theory. We show that the separation theorem foropenconvexsetsisequivalenttoWKL0 over RCA0. Weshow that the separation theorem for separably closed convex sets is equivalent to ACA0 over RCA0. Our strategy for provin ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
investigating the strength of set existence axioms needed for separable Banach space theory. We show that the separation theorem foropenconvexsetsisequivalenttoWKL0 over RCA0. Weshow that the separation theorem for separably closed convex sets is equivalent to ACA0 over RCA0. Our strategy for proving these geometrical Hahn–Banach theorems is to reduce to the finitedimensional case by means of a compactness argument. 1.
Comparing DNR and WWKL
 Pennsylvania State University
, 2004
"... Abstract. In Reverse Mathematics, the axiom system DNR, asserting the existence of diagonally nonrecursive functions, is strictly weaker than WWKL0 (weak weak König’s Lemma). §1. Introduction. Reverse mathematics is a branch of proof theory which involves proving the equivalence of mathematical the ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Abstract. In Reverse Mathematics, the axiom system DNR, asserting the existence of diagonally nonrecursive functions, is strictly weaker than WWKL0 (weak weak König’s Lemma). §1. Introduction. Reverse mathematics is a branch of proof theory which involves proving the equivalence of mathematical theorems with certain collections of axioms over a weaker base theory. In the form adopted by Harvey Friedman (see, e.g., [3]) and Stephen G. Simpson, expounded in the monograph [9] and numerous papers, it involves formulating “countable mathematics ” in
Axiomatic Tools versus Constructive approach to Unconventional Algorithms
"... Abstract. In this paper, we analyze axiomatic issues of unconventional computations from a methodological and philosophical point of view. We explain how the new models of algorithms changed the algorithmic universe, making it open and allowing increased flexibility and creativity. However, the grea ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. In this paper, we analyze axiomatic issues of unconventional computations from a methodological and philosophical point of view. We explain how the new models of algorithms changed the algorithmic universe, making it open and allowing increased flexibility and creativity. However, the greater power of new types of algorithms also brought the greater complexity of the algorithmic universe, demanding new tools for its study. That is why we analyze new powerful tools brought forth by the axiomatic theory of algorithms, automata and computation. 1 1
OPEN QUESTIONS IN REVERSE MATHEMATICS
, 2010
"... The objective of this paper is to provide a source of open questions in reverse mathematics and to point to areas where there could be interesting developments. The questions I discuss are mostly known and come from somewhere in the literature. My objective was to compile them in one place and discu ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
The objective of this paper is to provide a source of open questions in reverse mathematics and to point to areas where there could be interesting developments. The questions I discuss are mostly known and come from somewhere in the literature. My objective was to compile them in one place and discuss them in the context of related work. The list is definitely not comprehensive, and my
Fundamental notions of analysis in subsystems of secondorder arithmetic
 Ann. Pure Appl. Logic
, 2006
"... This Article is brought to you for free and open access by the Dietrich College of Humanities and Social Sciences at Research Showcase @ CMU. It has ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This Article is brought to you for free and open access by the Dietrich College of Humanities and Social Sciences at Research Showcase @ CMU. It has