Results 1 
3 of
3
Unfolding finitist arithmetic
, 2010
"... The concept of the (full) unfolding U(S) of a schematic system S is used to answer the following question: Which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted S? The program to determine U(S) for various systems S of foundational significan ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
(Show Context)
The concept of the (full) unfolding U(S) of a schematic system S is used to answer the following question: Which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted S? The program to determine U(S) for various systems S of foundational significance was previously carried out for a system of nonfinitist arithmetic, NFA; it was shown that U(NFA) is prooftheoretically equivalent to predicative analysis. In the present paper we work out the unfolding notions for a basic schematic system of finitist arithmetic, FA, and for an extension of that by a form BR of the socalled Bar Rule. It is shown that U(FA) and U(FA + BR) are prooftheoretically equivalent, respectively, to Primitive Recursive Arithmetic, PRA, and to Peano Arithmetic, PA.
Gödel on Intuition and on Hilbert’s finitism
"... There are some puzzles about Gödel’s published and unpublished remarks concerning finitism that have led some commentators to believe that his conception of it was unstable, that he oscillated back and forth between different accounts of it. I want to discuss these puzzles and argue that, on the con ..."
Abstract
 Add to MetaCart
(Show Context)
There are some puzzles about Gödel’s published and unpublished remarks concerning finitism that have led some commentators to believe that his conception of it was unstable, that he oscillated back and forth between different accounts of it. I want to discuss these puzzles and argue that, on the contrary, Gödel’s writings represent a smooth evolution, with just one rather small doublereversal, of his view of finitism. He used the term “finit ” (in German) or “finitary ” or “finitistic ” primarily to refer to Hilbert’s conception of finitary mathematics. On two occasions (only, as far as I know), the lecture notes for his lecture at Zilsel’s [Gödel, 1938a] and the lecture notes for a lecture at Yale [Gödel, *1941], he used it in a way that he knew—in the second case, explicitly—went beyond what Hilbert meant. Early in his career, he believed that finitism (in Hilbert’s sense) is openended, in the sense that no correct formal system can be known to formalize all finitist proofs and, in particular, all possible finitist proofs of consistency of firstorder number theory, P A; but starting in the Dialectica paper
JACQUES HERBRAND: LIFE, LOGIC, AND AUTOMATED DEDUCTION
"... The lives of mathematical prodigies who passed away very early after groundbreaking work invoke a fascination for later generations: The early death of Niels Henrik Abel (1802–1829) from ill health after a sled trip to visit his fiancé for Christmas; the obscure circumstances of Evariste Galois ’ (1 ..."
Abstract
 Add to MetaCart
The lives of mathematical prodigies who passed away very early after groundbreaking work invoke a fascination for later generations: The early death of Niels Henrik Abel (1802–1829) from ill health after a sled trip to visit his fiancé for Christmas; the obscure circumstances of Evariste Galois ’ (1811–1832) duel; the deaths of consumption of Gotthold Eisenstein (1823–1852) (who sometimes lectured his few students from his bedside) and of Gustav Roch (1839–1866) in Venice; the drowning of the topologist Pavel Samuilovich Urysohn (1898–1924) on vacation; the burial of Raymond Paley (1907–1933) in an avalanche at Deception Pass in the Rocky Mountains; as well as the fatal imprisonment of Gerhard Gentzen (1909–1945) in Prague1 — these are tales most scholars of logic and mathematics have heard in their student days. Jacques Herbrand, a young prodigy admitted to the École Normale Supérieure as the best student of the year1925, when he was17, died only six years later in a mountaineering accident in La Bérarde (Isère) in France. He left a legacy in logic and mathematics that is outstanding.