Results 1  10
of
125
Compressed sensing
 IEEE Trans. Inform. Theory
"... Abstract—Suppose is an unknown vector in (a digital image or signal); we plan to measure general linear functionals of and then reconstruct. If is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measureme ..."
Abstract

Cited by 1730 (18 self)
 Add to MetaCart
Abstract—Suppose is an unknown vector in (a digital image or signal); we plan to measure general linear functionals of and then reconstruct. If is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements can be dramatically smaller than the size. Thus, certain natural classes of images with pixels need only = ( 1 4 log 5 2 ()) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual pixel samples. More specifically, suppose has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)—so the coefficients belong to an ball for 0 1. The most important coefficients in that expansion allow reconstruction with 2 error ( 1 2 1
DeNoising By SoftThresholding
, 1992
"... Donoho and Johnstone (1992a) proposed a method for reconstructing an unknown function f on [0; 1] from noisy data di = f(ti)+ zi, iid i =0;:::;n 1, ti = i=n, zi N(0; 1). The reconstruction fn ^ is de ned in the wavelet domain by translating all the empirical wavelet coe cients of d towards 0 by an a ..."
Abstract

Cited by 798 (13 self)
 Add to MetaCart
Donoho and Johnstone (1992a) proposed a method for reconstructing an unknown function f on [0; 1] from noisy data di = f(ti)+ zi, iid i =0;:::;n 1, ti = i=n, zi N(0; 1). The reconstruction fn ^ is de ned in the wavelet domain by translating all the empirical wavelet coe cients of d towards 0 by an amount p 2 log(n) = p n. We prove two results about that estimator. [Smooth]: With high probability ^ fn is at least as smooth as f, in any of a wide variety of smoothness measures. [Adapt]: The estimator comes nearly as close in mean square to f as any measurable estimator can come, uniformly over balls in each of two broad scales of smoothness classes. These two properties are unprecedented in several ways. Our proof of these results develops new facts about abstract statistical inference and its connection with an optimal recovery model.
The Lifting Scheme: A Construction Of Second Generation Wavelets
, 1997
"... . We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to ..."
Abstract

Cited by 377 (16 self)
 Add to MetaCart
. We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to a faster, inplace calculation of the wavelet transform. Several examples are included. Key words. wavelet, multiresolution, second generation wavelet, lifting scheme AMS subject classifications. 42C15 1. Introduction. Wavelets form a versatile tool for representing general functions or data sets. Essentially we can think of them as data building blocks. Their fundamental property is that they allow for representations which are efficient and which can be computed fast. In other words, wavelets are capable of quickly capturing the essence of a data set with only a small set of coefficients. This is based on the fact that most data sets have correlation both in time (or space) and frequenc...
New tight frames of curvelets and optimal representations of objects with piecewise C² singularities
 COMM. ON PURE AND APPL. MATH
, 2002
"... This paper introduces new tight frames of curvelets to address the problem of finding optimally sparse representations of objects with discontinuities along C2 edges. Conceptually, the curvelet transform is a multiscale pyramid with many directions and positions at each length scale, and needleshap ..."
Abstract

Cited by 232 (17 self)
 Add to MetaCart
This paper introduces new tight frames of curvelets to address the problem of finding optimally sparse representations of objects with discontinuities along C2 edges. Conceptually, the curvelet transform is a multiscale pyramid with many directions and positions at each length scale, and needleshaped elements at fine scales. These elements have many useful geometric multiscale features that set them apart from classical multiscale representations such as wavelets. For instance, curvelets obey a parabolic scaling relation which says that at scale 2−j, each element has an envelope which is aligned along a ‘ridge ’ of length 2−j/2 and width 2−j. We prove that curvelets provide an essentially optimal representation of typical objects f which are C2 except for discontinuities along C2 curves. Such representations are nearly as sparse as if f were not singular and turn out to be far more sparse than the wavelet decomposition of the object. For instance, the nterm partial reconstruction f C n obtained by selecting the n largest terms in the curvelet series obeys ‖f − f C n ‖ 2 L2 ≤ C · n−2 · (log n) 3, n → ∞. This rate of convergence holds uniformly over a class of functions which are C 2 except for discontinuities along C 2 curves and is essentially optimal. In comparison, the squared error of nterm wavelet approximations only converges as n −1 as n → ∞, which is considerably worst than the optimal behavior.
Translationinvariant denoising
, 1995
"... DeNoising with the traditional (orthogonal, maximallydecimated) wavelet transform sometimes exhibits visual artifacts; we attribute some of these – for example, Gibbs phenomena in the neighborhood of discontinuities – to the lack of translation invariance of the wavelet basis. One method to suppre ..."
Abstract

Cited by 228 (8 self)
 Add to MetaCart
DeNoising with the traditional (orthogonal, maximallydecimated) wavelet transform sometimes exhibits visual artifacts; we attribute some of these – for example, Gibbs phenomena in the neighborhood of discontinuities – to the lack of translation invariance of the wavelet basis. One method to suppress such artifacts, termed “cycle spinning ” by Coifman, is to “average out ” the translation dependence. For a range of shifts, one shifts the data (right or left as the case may be), DeNoises the shifted data, and then unshifts the denoised data. Doing this for each of a range of shifts, and averaging the several results so obtained, produces a reconstruction subject to far weaker Gibbs phenomena than thresholding based DeNoising using the traditional orthogonal wavelet transform. CycleSpinning over the range of all circulant shifts can be accomplished in order nlog 2(n) time; it is equivalent to denoising using the undecimated or stationary wavelet transform. Cyclespinning exhibits benefits outside of wavelet denoising, for example in cosine packet denoising, where it helps suppress ‘clicks’. It also has a counterpart in frequency domain denoising, where the goal of translationinvariance is replaced by modulation invariance, and the central shiftDeNoiseunshift operation is replaced by modulateDeNoisedemodulate. We illustrate these concepts with extensive computational examples; all figures presented here are reproducible using the WaveLab software package. 1
WaveletBased Histograms for Selectivity Estimation
 in SIGMOD
, 1998
"... Query optimization is an integral part of relational database management systems. One important task in query optimization is selectivity estimation, that is, given a query P , we need to estimate the fraction of records in the database that satisfy P . Many commercial database systems maintain hist ..."
Abstract

Cited by 210 (16 self)
 Add to MetaCart
Query optimization is an integral part of relational database management systems. One important task in query optimization is selectivity estimation, that is, given a query P , we need to estimate the fraction of records in the database that satisfy P . Many commercial database systems maintain histograms to approximate the frequency distribution of values in the attributes of relations. In this paper, we present a technique based upon a multiresolution wavelet decomposition for building histograms on the underlying data distributions, with applications to databases, statistics, and simulation. Histograms built on the cumulative data distributions give very good approximations with limited space usage. We give fast algorithms for constructing histograms and using them in an online fashion for selectivity estimation. Our histograms also provide quick approximate answers to OLAP queries when the exact answers are not required. Our method captures the joint distribution of multiple attri...
Nonlinear solution of linear inverse problems by waveletvaguelette decomposition
, 1992
"... We describe the WaveletVaguelette Decomposition (WVD) of a linear inverse problem. It is a substitute for the singular value decomposition (SVD) of an inverse problem, and it exists for a class of special inverse problems of homogeneous type { such asnumerical di erentiation, inversion of Abeltype ..."
Abstract

Cited by 182 (12 self)
 Add to MetaCart
We describe the WaveletVaguelette Decomposition (WVD) of a linear inverse problem. It is a substitute for the singular value decomposition (SVD) of an inverse problem, and it exists for a class of special inverse problems of homogeneous type { such asnumerical di erentiation, inversion of Abeltype transforms, certain convolution transforms, and the Radon Transform. We propose to solve illposed linear inverse problems by nonlinearly \shrinking" the WVD coe cients of the noisy, indirect data. Our approach o ers signi cant advantages over traditional SVD inversion in the case of recovering spatially inhomogeneous objects. We suppose that observations are contaminated by white noise and that the object is an unknown element of a Besov space. We prove that nonlinear WVD shrinkage can be tuned to attain the minimax rate of convergence, for L 2 loss, over the entire Besov scale. The important case of Besov spaces Bp;q, p <2, which model spatial inhomogeneity, is included. In comparison, linear procedures { SVD included { cannot attain optimal rates of convergence over such classes in the case p<2. For example, our methods achieve faster rates of convergence, for objects known to lie in the Bump Algebra or in Bounded Variation, than any linear procedure.
Data compression and harmonic analysis
 IEEE Trans. Inform. Theory
, 1998
"... In this paper we review some recent interactions between harmonic analysis and data compression. The story goes back of course to Shannon’s R(D) theory... ..."
Abstract

Cited by 140 (24 self)
 Add to MetaCart
In this paper we review some recent interactions between harmonic analysis and data compression. The story goes back of course to Shannon’s R(D) theory...
Bayesian TreeStructured Image Modeling using Waveletdomain Hidden Markov Models
 IEEE Trans. Image Processing
, 1999
"... Waveletdomain hidden Markov models have proven to be useful tools for statistical signal and image processing. The hidden Markov tree (HMT) model captures the key features of the joint probability density of the wavelet coefficients of realworld data. One potential drawback to the HMT framework ..."
Abstract

Cited by 131 (15 self)
 Add to MetaCart
Waveletdomain hidden Markov models have proven to be useful tools for statistical signal and image processing. The hidden Markov tree (HMT) model captures the key features of the joint probability density of the wavelet coefficients of realworld data. One potential drawback to the HMT framework is the need for computationally expensive iterative training to fit an HMT model to a given data set (using the ExpectationMaximization algorithm, for example). In this paper, we greatly simplify the HMT model by exploiting the inherent selfsimilarity of realworld images. This simplified model specifies the HMT parameters with just nine metaparameters (independent of the size of the image and the number of wavelet scales). We also introduce a Bayesian universal HMT (uHMT) that fixes these nine parameters. The uHMT requires no training of any kind. While extremely simple, we show using a series of image estimation /denoising experiments that these two new models retain nearly all of the key structure modeled by the full HMT. Finally, we propose a fast shiftinvariant HMT estimation algorithm that outperforms other waveletbased estimators in the current literature, both in meansquare error and visual metrics.
Ridgelets: A key to higherdimensional intermittency?
, 1999
"... In dimensions two and higher, wavelets can efficiently represent only a small range of the full diversity of interesting behavior. In effect, wavelets are welladapted for pointlike phenomena, whereas in dimensions greater than one, interesting phenomena can be organized along lines, hyperplanes, and ..."
Abstract

Cited by 112 (10 self)
 Add to MetaCart
In dimensions two and higher, wavelets can efficiently represent only a small range of the full diversity of interesting behavior. In effect, wavelets are welladapted for pointlike phenomena, whereas in dimensions greater than one, interesting phenomena can be organized along lines, hyperplanes, and other nonpointlike structures, for which wavelets are poorly adapted. We discuss in this paper a new subject, ridgelet analysis, which can effectively deal with linelike phenomena in dimension 2, planelike phenomena in dimension 3 and so on. It encompasses a collection of tools which all begin from the idea of analysis by ridge functions ψ(u1x1+...+unxn) whose ridge profiles ψ are wavelets, or alternatively from performing a wavelet analysis in the Radon domain. The paper reviews recent work on the continuous ridgelet transform (CRT), ridgelet frames, ridgelet orthonormal bases, ridgelets and edges and describes a new notion of smoothness naturally attached to this new representation.