Results 1  10
of
1,373
Bayesian Analysis of Stochastic Volatility Models
, 1994
"... this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener alized ARCH ..."
Abstract

Cited by 383 (20 self)
 Add to MetaCart
this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener alized ARCH (GARCH) models [see Bollerslev, Chou, and Kroner (1992) for a survey of ARCH modeling], both the mean and logvolatility equations have separate error terms. The ease of evaluating the ARCH likelihood function and the ability of the ARCH specification to accommodate the timevarying volatility found in many economic time series has fostered an explosion in the use of ARCH models. On the other hand, the likelihood function for stochastic volatility models is difficult to evaluate, and hence these models have had limited empirical application
Expected stock returns and volatility
 Journal of Financial Economics
, 1987
"... This paper examines the relation between stock returns and stock market volatility. We find evidence that the expected market risk premium (the expected return on a stock portfolio minus the Treasury bill yield) is positively related to the predictable volatility of stock returns. There is also evid ..."
Abstract

Cited by 371 (8 self)
 Add to MetaCart
This paper examines the relation between stock returns and stock market volatility. We find evidence that the expected market risk premium (the expected return on a stock portfolio minus the Treasury bill yield) is positively related to the predictable volatility of stock returns. There is also evidence that unexpected stock market returns are negatively related to the unexpected change in the volatility of stock returns. This negative relation provides indirect evidence of a positive relation between expected risk premiums and volatility. 1.
Measuring and testing the impact of news on volatility
 Journal of Finance
, 1993
"... This paper introduces the News Impact Curve to measure how new information is incorporated into volatility estimates. A variety of new and existing ARCH models are compared and estimated with daily Japanese stock return data to determine the shape of the News Impact Curve. New diagnostic tests are p ..."
Abstract

Cited by 367 (10 self)
 Add to MetaCart
This paper introduces the News Impact Curve to measure how new information is incorporated into volatility estimates. A variety of new and existing ARCH models are compared and estimated with daily Japanese stock return data to determine the shape of the News Impact Curve. New diagnostic tests are presented which emphasize the asymmetry of the volatility response to news. A partially nonparametric ARCH model is introduced to allow the data to estimate this shape. A comparison of this model with the existing models suggests that the best models are one by Glosten Jaganathan and Runkle (GJR) and Nelson's EGARCE. Similar results hold on a precrash sample period but are less strong.
Modeling and Forecasting Realized Volatility
, 2002
"... this paper is built. First, although raw returns are clearly leptokurtic, returns standardized by realized volatilities are approximately Gaussian. Second, although the distributions of realized volatilities are clearly rightskewed, the distributions of the logarithms of realized volatilities are a ..."
Abstract

Cited by 297 (33 self)
 Add to MetaCart
this paper is built. First, although raw returns are clearly leptokurtic, returns standardized by realized volatilities are approximately Gaussian. Second, although the distributions of realized volatilities are clearly rightskewed, the distributions of the logarithms of realized volatilities are approximately Gaussian. Third, the longrun dynamics of realized logarithmic volatilities are well approximated by a fractionallyintegrated longmemory process. Motivated by the three ABDL empirical regularities, we proceed to estimate and evaluate a multivariate model for the logarithmic realized volatilities: a fractionallyintegrated Gaussian vector autoregression (VAR) . Importantly, our approach explicitly permits measurement errors in the realized volatilities. Comparing the resulting volatility forecasts to those obtained from currently popular daily volatility models and more complicated highfrequency models, we find that our simple Gaussian VAR forecasts generally produce superior forecasts. Furthermore, we show that, given the theoretically motivated and empirically plausible assumption of normally distributed returns conditional on the realized volatilities, the resulting lognormalnormal mixture forecast distribution provides conditionally wellcalibrated density forecasts of returns, from which we obtain accurate estimates of conditional return quantiles. In the remainder of this paper, we proceed as follows. We begin in section 2 by formally developing the relevant quadratic variation theory within a standard frictionless arbitragefree multivariate pricing environment. In section 3 we discuss the practical construction of realized volatilities from highfrequency foreign exchange returns. Next, in section 4 we summarize the salient distributional features of r...
Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts
"... Volatility permeates modern financial theories and decision making processes. As such, accurate measures and good forecasts of future volatility are critical for the implementation and evaluation of asset and derivative pricing theories as well as trading and hedging strategies. In response to this, ..."
Abstract

Cited by 286 (32 self)
 Add to MetaCart
Volatility permeates modern financial theories and decision making processes. As such, accurate measures and good forecasts of future volatility are critical for the implementation and evaluation of asset and derivative pricing theories as well as trading and hedging strategies. In response to this, a voluminous literature has emerged for modeling the temporal dependencies in financial market volatility at the daily and lower frequencies using ARCH and stochastic volatility type models. Most of these studies find highly significant insample parameter estimates and pronounced intertemporal volatility persistence. Meanwhile, when judged by standard forecast evaluation criteria, based on the squared or absolute returns over daily or longer forecast horizons, standard volatility models provide seemingly poor forecasts. The present paper demonstrates that, contrary to this contention, in empirically realistic situations the models actually produce strikingly accurate interdaily forecasts f...
Evaluating Interval Forecasts
 International Economic Review
, 1997
"... This paper is intended to address the deficiency by clearly defining what is meant by a "good" interval forecast, and describing how to test if a given interval forecast deserves the label "good". One of the motivations of Engle's (1982) classic paper was to form dynamic int ..."
Abstract

Cited by 182 (10 self)
 Add to MetaCart
This paper is intended to address the deficiency by clearly defining what is meant by a "good" interval forecast, and describing how to test if a given interval forecast deserves the label "good". One of the motivations of Engle's (1982) classic paper was to form dynamic interval forecasts around point predictions. The insight was that the intervals should be narrow in tranquil times and wide in volatile times, so that the occurrences of observations outside the interval forecast would be spread out over the sample and not come in clusters. An interval forecast that 3 fails to account for higherorder dynamics may be correct on average (have correct unconditional coverage), but in any given period it will have incorrect conditional coverage characterized by clustered outliers. These concepts will be defined precisely below, and tests for correct conditional coverage are suggested. Chatfield (1993) emphasizes that model misspecification is a much more important source of poor interval forecasting than is simple estimation error. Thus, our testing criterion and the tests of this criterion are model free. In this regard, the approach taken here is similar to the one taken by Diebold and Mariano (1995). This paper can also be seen as establishing a formal framework for the ideas suggested in Granger, White and Kamstra (1989). Recently, financial market participants have shown increasing interest in interval forecasts as measures of uncertainty. Thus, we apply our methods to the interval forecasts provided by J.P. Morgan (1995). Furthermore, the socalled "ValueatRisk" measures suggested for risk measurement correspond to tail forecasts, i.e., onesided interval forecasts of portfolio returns. Lopez (1996) evaluates these types of forecasts applying the procedures develo...
Structural Models of Corporate Bond Pricing: An Empirical Analysis
, 2003
"... This paper empirically tests five structural models of corporate bond pricing: those of Merton (1974), Geske (1977), Leland and Toft (1996), Longsta# and Schwartz (1995), and CollinDufresne and Goldstein (2001). We implement the models using a sample of 182 bond prices from firms with simple capita ..."
Abstract

Cited by 150 (5 self)
 Add to MetaCart
This paper empirically tests five structural models of corporate bond pricing: those of Merton (1974), Geske (1977), Leland and Toft (1996), Longsta# and Schwartz (1995), and CollinDufresne and Goldstein (2001). We implement the models using a sample of 182 bond prices from firms with simple capital structures during the period 19861997. The conventional wisdom is that structural models do not generate spreads as high as those seen in the bond market, and true to expectations we find that the predicted spreads in our implementation of the Merton model are too low. However, most of the other structural models predict spreads that are too high on average. Nevertheless, accuracy is a problem, as the newer models tend to severely overstate the credit risk of firms with high leverage or volatility and yet su#er from a spread underprediction problem with safer bonds. The Leland and Toft model is an exception in that it overpredicts spreads on most bonds, particularly those with high coupons. More accurate structural models must avoid features that increase the credit risk on the riskier bonds while scarcely a#ecting the spreads of the safest bonds.