Results 1  10
of
122
Representing Moving Images with Layers
, 1994
"... We describe a system for representing moving images with sets of overlapping layers. Each layer contains an intensity map that defines the additive values of each pixel, along with an alpha map that serves as a mask indicating the transparency. The layers are ordered in depth and they occlude each o ..."
Abstract

Cited by 522 (12 self)
 Add to MetaCart
We describe a system for representing moving images with sets of overlapping layers. Each layer contains an intensity map that defines the additive values of each pixel, along with an alpha map that serves as a mask indicating the transparency. The layers are ordered in depth and they occlude each other in accord with the rules of compositing. Velocity maps define how the layers are to be warped over time. The layered representation is more flexible than standard image transforms and can capture many important properties of natural image sequences. We describe some methods for decomposing image sequences into layers using motion analysis, and we discuss how the representation may be used for image coding and other applications.
High Accuracy Optical Flow Estimation Based on a Theory for Warping
, 2004
"... We study an energy functional for computing optical flow that combines three assumptions: a brightness constancy assumption, a gradient constancy assumption, and a discontinuitypreserving spatiotemporal smoothness constraint. ..."
Abstract

Cited by 469 (45 self)
 Add to MetaCart
(Show Context)
We study an energy functional for computing optical flow that combines three assumptions: a brightness constancy assumption, a gradient constancy assumption, and a discontinuitypreserving spatiotemporal smoothness constraint.
A database and evaluation methodology for optical flow
 In Proceedings of the IEEE International Conference on Computer Vision
, 2007
"... The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex n ..."
Abstract

Cited by 356 (23 self)
 Add to MetaCart
(Show Context)
The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the groundtruth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic sequences, (3) high framerate video used to study interpolation error, and (4) modified stereo sequences of static scenes. In addition to the average angular error used by Barron et al., we compute the absolute flow endpoint error, measures for frame interpolation error, improved statistics, and results at motion discontinuities and in textureless regions. In October 2007, we published the performance of several wellknown methods on a preliminary version of our data to establish the current state of the art. We also made the data freely available on the web at
Robust Anisotropic Diffusion
, 1998
"... Relations between anisotropic diffusion and robust statistics are described in this paper. Specifically, we show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The "edgestopping" function in the ani ..."
Abstract

Cited by 333 (17 self)
 Add to MetaCart
Relations between anisotropic diffusion and robust statistics are described in this paper. Specifically, we show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The "edgestopping" function in the anisotropic diffusion equation is closely related to the error norm and influence function in the robust estimation framework. This connection leads to a new "edgestopping" function based on Tukey's biweight robust estimator, that preserves sharper boundaries than previous formulations and improves the automatic stopping of the diffusion. The robust statistical interpretation also provides a means for detecting the boundaries (edges) between the piecewise smooth regions in an image that has been smoothed with anisotropic diffusion. Additionally, we derive a relationship between anisotropic diffusion and regularization with line processes. Adding constraints on the spatial organization of the ...
The Computation of Optical Flow
, 1995
"... Twodimensional image motion is the projection of the threedimensional motion of objects, relative to a visual sensor, onto its image plane. Sequences of timeordered images allow the estimation of projected twodimensional image motion as either instantaneous image velocities or discrete image dis ..."
Abstract

Cited by 274 (10 self)
 Add to MetaCart
(Show Context)
Twodimensional image motion is the projection of the threedimensional motion of objects, relative to a visual sensor, onto its image plane. Sequences of timeordered images allow the estimation of projected twodimensional image motion as either instantaneous image velocities or discrete image displacements. These are usually called the optical flow field or the image velocity field. Provided that optical flow is a reliable approximation to twodimensional image motion, it may then be used to recover the threedimensional motion of the visual sensor (to within a scale factor) and the threedimensional surface structure (shape or relative depth) through assumptions concerning the structure of the optical flow field, the threedimensional environment and the motion of the sensor. Optical flow may also be used to perform motion detection, object segmentation, timetocollision and focus of expansion calculations, motion compensated encoding and stereo disparity measurement. We investiga...
On the Unification Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision
, 1996
"... The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While "lineprocess" models of discontinuities have received a great deal of attention, there has been recent ..."
Abstract

Cited by 254 (9 self)
 Add to MetaCart
The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While "lineprocess" models of discontinuities have received a great deal of attention, there has been recent interest in the use of robust statistical techniques to account for discontinuities. This paper unifies the two approaches. To achieve this we generalize the notion of a "line process" to that of an analog "outlier process" and show how a problem formulated in terms of outlier processes can be viewed in terms of robust statistics. We also characterize a class of robust statistical problems for which an equivalent outlierprocess formulation exists and give a straightforward method for converting a robust estimation problem into an outlierprocess formulation. We show how prior assumptions about the spatial structure of outliers can be expressed as constraints on the recovered analog outlier processes and how traditional continuation methods can be extended to the explicit outlierprocess formulation. These results indicate that the outlierprocess approach provides a general framework which subsumes the traditional lineprocess approaches as well as a wide class of robust estimation problems. Examples in surface reconstruction, image segmentation, and optical flow are presented to illustrate the use of outlier processes and to show how the relationship between outlier processes and robust statistics can be exploited. An appendix provides a catalog of common robust error norms and their equivalent outlierprocess formulations.
Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods
 International Journal of Computer Vision
, 2005
"... Abstract. Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün’s structure tensor method, and into global methods such as the Horn/Schunck approach and its e ..."
Abstract

Cited by 206 (15 self)
 Add to MetaCart
(Show Context)
Abstract. Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün’s structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways: (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure.
Simulated annealing: Practice versus theory
 Mathl. Comput. Modelling
, 1993
"... this paper "ergodic" is used in a very weak sense, as it is not proposed, theoretically or practically, that all states of the system are actually to be visited ..."
Abstract

Cited by 199 (20 self)
 Add to MetaCart
this paper "ergodic" is used in a very weak sense, as it is not proposed, theoretically or practically, that all states of the system are actually to be visited
Motion Segmentation and Tracking Using Normalized Cuts
, 1998
"... We propose a motion segmentation algorithm that aims to break a scene into its most prominent moving groups. A weighted graph is constructed on the ira. age sequence by connecting pixels that arc in the spatiotemporal neighborhood of each other. At each pizel, we define motion profile vectors which ..."
Abstract

Cited by 173 (6 self)
 Add to MetaCart
(Show Context)
We propose a motion segmentation algorithm that aims to break a scene into its most prominent moving groups. A weighted graph is constructed on the ira. age sequence by connecting pixels that arc in the spatiotemporal neighborhood of each other. At each pizel, we define motion profile vectors which capture the probability distribution of the image veloczty. The distance between motion profiles is used to assign a weight on the graph edges. 5rsmg normalized cuts we find the most salient partitions of the spatiotemporaI graph formed by the image sequence. For swmenting long image sequences,' we have developed a recursire update procedure that incorporates knowledge of segmentation in previous frames for efficiently finding the group correspondence in the new frame.
Layered Representation for Motion Analysis
, 1993
"... Standard approaches to motion analysis assume that the optic flow is smooth; such techniques have trouble dealing with occlusion boundaries. The most popular solution is to allow discontinuities in the flow field, imposing the smoothness constraint in a piecewise fashion. But there is a sense in whi ..."
Abstract

Cited by 170 (5 self)
 Add to MetaCart
Standard approaches to motion analysis assume that the optic flow is smooth; such techniques have trouble dealing with occlusion boundaries. The most popular solution is to allow discontinuities in the flow field, imposing the smoothness constraint in a piecewise fashion. But there is a sense in which the discontinuities in flow are artifactual, resulting from the attempt to capture the motion of multiple overlapping objects in a single flow field. Instead we can decompose the image sequence into a set of overlapping layers, where each layer's motion is described by a smooth flow field. The discontinuities in the description are then attributed to object opacities rather than to the flow itself, mirroring the structure of the scene. We have devised a set of techniques for segmenting images into coherently moving regions using affine motion analysis and clustering techniques. We are able to decompose an image into a set of layers along with information about occlusion and depth ordering. We have