Results 1  10
of
108
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract

Cited by 728 (1 self)
 Add to MetaCart
(Show Context)
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision surfaces are found by solving a linearly constrained quadratic programming problem. This optimization problem is challenging because the quadratic form is completely dense and the memory requirements grow with the square of the number of data points. We present a decomposition algorithm that guarantees global optimality, and can be used to train SVM's over very large data sets. The main idea behind the decomposition is the iterative solution of subproblems and the evaluation of optimality conditions which are used both to generate improved iterative values, and also establish the stopping criteria for the algorithm. We present experimental results of our implementation of SVM, and demonstrate the ...
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
(Show Context)
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available, and that the constraint gradients are sparse. We discuss
An Improved Training Algorithm for Support Vector Machines
, 1997
"... We investigate the problem of training a Support Vector Machine (SVM) [1, 2, 7] on a very large date base (e.g. 50,000 data points) in the case in which the number of support vectors is also very large (e.g. 40,000). Training a SVM is equivalent to solving a linearly constrained quadratic programmin ..."
Abstract

Cited by 332 (1 self)
 Add to MetaCart
(Show Context)
We investigate the problem of training a Support Vector Machine (SVM) [1, 2, 7] on a very large date base (e.g. 50,000 data points) in the case in which the number of support vectors is also very large (e.g. 40,000). Training a SVM is equivalent to solving a linearly constrained quadratic programming (QP) problem in a number of variables equal to the number of data points. This optimization problem is known to be challenging when the number of data points exceeds few thousands. In previous work, done by us as well as by other researchers, the strategy used to solve the large scale QP problem takes advantage of the fact that the expected number of support vectors is small (! 3; 000). Therefore, the existing algorithms cannot deal with more than a few thousand support vectors. In this paper we present a decomposition algorithm that is guaranteed to solve the QP problem and that does not make assumptions on the expected number of support vectors. In order to present the feasibility of our...
Support vector machines: Training and applications
 A.I. MEMO 1602, MIT A. I. LAB
, 1997
"... The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Laboratories [3, 6, 8, 24]. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and MultiLayer Perc ..."
Abstract

Cited by 221 (3 self)
 Add to MetaCart
(Show Context)
The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Laboratories [3, 6, 8, 24]. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and MultiLayer Perceptron classifiers. The main idea behind the technique is to separate the classes with a surface that maximizes the margin between them. An interesting property of this approach is that it is an approximate implementation of the Structural Risk Minimization (SRM) induction principle [23]. The derivation of Support Vector Machines, its relationship with SRM, and its geometrical insight, are discussed in this paper. Since Structural Risk Minimization is an inductive principle that aims at minimizing a bound on the generalization error of a model, rather than minimizing the Mean Square Error over the data set (as Empirical Risk Minimization methods do), training a SVM to obtain the maximum margin classi er requires a different objective function. This objective function is then optimized by solving a largescale quadratic programming problem with linear and box constraints. The problem is considered challenging, because the quadratic form is completely dense, so the memory
CUTE: Constrained and unconstrained testing environment
, 1993
"... The purpose of this paper is to discuss the scope and functionality of a versatile environment for testing small and largescale nonlinear optimization algorithms. Although many of these facilities were originally produced by the authors in conjunction with the software package LANCELOT, we belie ..."
Abstract

Cited by 185 (3 self)
 Add to MetaCart
The purpose of this paper is to discuss the scope and functionality of a versatile environment for testing small and largescale nonlinear optimization algorithms. Although many of these facilities were originally produced by the authors in conjunction with the software package LANCELOT, we believe that they will be useful in their own right and should be available to researchers for their development of optimization software. The tools are available by anonymous ftp from a number of sources and may, in many cases, be installed automatically. The scope of a major collection of test problems written in the standard input format (SIF) used by the LANCELOT software package is described. Recognising that most software was not written with the SIF in mind, we provide tools to assist in building an interface between this input format and other optimization packages. These tools already provide a link between the SIF and an number of existing packages, including MINOS and OSL. In ad...
Nonlinear Prediction of Chaotic Time Series Using Support Vector Machines
 IEEE Workshop on Neural Networks for Signal Processing VII
, 1997
"... A novel method for regression has been recently proposed by V. Vapnik et al. [8, 9]. The technique, called Support Vector Machine (SVM), is very well founded from the mathematical point of view and seems to provide a new insight in function approximation. We implemented the SVM and tested it on the ..."
Abstract

Cited by 124 (2 self)
 Add to MetaCart
(Show Context)
A novel method for regression has been recently proposed by V. Vapnik et al. [8, 9]. The technique, called Support Vector Machine (SVM), is very well founded from the mathematical point of view and seems to provide a new insight in function approximation. We implemented the SVM and tested it on the same data base of chaotic time series that was used in [1] to compare the performances of different approximation techniques, including polynomial and rational approximation, local polynomial techniques, Radial Basis Functions, and Neural Networks. The SVM performs better than the approaches presented in [1]. We also study, for a particular time series, the variability in performance with respect to the few free parameters of SVM.
User's Guide For SNOPT 5.3: A Fortran Package For LargeScale Nonlinear Programming
, 1999
"... SNOPT is a generalpurpose system for solving optimization problems involving many variables and constraints. It minimizes a linear or nonlinear function subject to bounds on the variables and sparse linear or nonlinear constraints. It is suitable for largescale linear and quadratic programming ..."
Abstract

Cited by 97 (2 self)
 Add to MetaCart
(Show Context)
SNOPT is a generalpurpose system for solving optimization problems involving many variables and constraints. It minimizes a linear or nonlinear function subject to bounds on the variables and sparse linear or nonlinear constraints. It is suitable for largescale linear and quadratic programming and for linearly constrained optimization, as well as for general nonlinear programs. SNOPT finds solutions that are locally optimal , and ideally any nonlinear functions should be smooth and users should provide gradients. It is often more widely useful. For example, local optima are often global solutions, and discontinuities in the function gradients can often be tolerated if they are not too close to an optimum. Unknown gradients are estimated by finite differences. SNOPT uses a sequential quadratic programming (SQP) algorithm that obtains search directions from a sequence of quadratic programming subproblems. Each QP subproblem minimizes a quadratic model of a certain Lagrangian function subject to a linearization of the constraints. An augmented Lagrangian merit function is reduced along each search direction to ensure convergence from any starting point. SNOPT is most efficient if only some of the variables enter nonlinearly, or if the number of active constraints (including simple bounds) is nearly as large as the number of variables. SNOPT requires relatively few evaluations of the problem functions. Hence it is especially effective if the objective or constraint functions (and their gradients) are expensive to evaluate. The source code for SNOPT is suitable for any machine with a Fortran compiler. SNOPT may be called from a driver program (typically in Fortran, C or MATLAB). SNOPT can also be used as a standalone package, reading data in the MPS ...
On the implementation of an algorithm for largescale equality constrained optimization
 SIAM Journal on Optimization
, 1998
"... Abstract. This paper describes a software implementation of Byrd and Omojokun’s trust region algorithm for solving nonlinear equality constrained optimization problems. The code is designed for the efficient solution of large problems and provides the user with a variety of linear algebra techniques ..."
Abstract

Cited by 47 (12 self)
 Add to MetaCart
(Show Context)
Abstract. This paper describes a software implementation of Byrd and Omojokun’s trust region algorithm for solving nonlinear equality constrained optimization problems. The code is designed for the efficient solution of large problems and provides the user with a variety of linear algebra techniques for solving the subproblems occurring in the algorithm. Second derivative information can be used, but when it is not available, limited memory quasiNewton approximations are made. The performance of the code is studied using a set of difficult test problems from the CUTE collection.
User’s Guide for SNOPT Version 7: Software for LargeScale Nonlinear Programming
"... SNOPT is a generalpurpose system for constrained optimization. It minimizes a linear or nonlinear function subject to bounds on the variables and sparse linear or nonlinear constraints. It is suitable for largescale linear and quadratic programming and for linearly constrained optimization, as wel ..."
Abstract

Cited by 42 (0 self)
 Add to MetaCart
SNOPT is a generalpurpose system for constrained optimization. It minimizes a linear or nonlinear function subject to bounds on the variables and sparse linear or nonlinear constraints. It is suitable for largescale linear and quadratic programming and for linearly constrained optimization, as well as for general nonlinear programs. SNOPT finds solutions that are locally optimal, and ideally any nonlinear functions should be smooth and users should provide gradients. It is often more widely useful. For example, local optima are often global solutions, and discontinuities in the function gradients can often be tolerated if they are not too close to an optimum. Unknown gradients are estimated by finite differences. SNOPT uses a sequential quadratic programming (SQP) algorithm. Search directions are obtained from QP subproblems that minimize a quadratic model of the Lagrangian function subject to linearized constraints. An augmented Lagrangian merit function is reduced along each search direction to ensure convergence from any starting point.
Estimation of the Optical Constants and Thickness of Thin Films Using Unconstrained Optimization
, 1999
"... Introduction The transmission of a thin film on a transparent substrate is a function of the wavelength () and given by: 1 T () = Ax B \Gamma Cx + Dx 2 where A, B, C, and D are functions of n(), k(), and d \Gamma the refractive index, the extinction coefficient, and the thickness of the film, ..."
Abstract

Cited by 29 (7 self)
 Add to MetaCart
Introduction The transmission of a thin film on a transparent substrate is a function of the wavelength () and given by: 1 T () = Ax B \Gamma Cx + Dx 2 where A, B, C, and D are functions of n(), k(), and d \Gamma the refractive index, the extinction coefficient, and the thickness of the film, respectively \Gamma and the refractive index of the substrate, assumed to be known. We wish to estimate d, n() and k() from a given set of experimental data [ i ; T meas ( i )], i = 1; : : : ; N , ( min i ! <F8.9