Results 1 
9 of
9
Metamathematical Properties of Intuitionistic Set Theories with Choice Principles
"... This paper is concerned with metamathematical properties of intuitionistic set theories with choice principles. It is proved that the disjunction property, the numerical existence property, Church’s rule, and several other metamathematical properties hold true for Constructive ZermeloFraenkel Set T ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
(Show Context)
This paper is concerned with metamathematical properties of intuitionistic set theories with choice principles. It is proved that the disjunction property, the numerical existence property, Church’s rule, and several other metamathematical properties hold true for Constructive ZermeloFraenkel Set Theory and full Intuitionistic ZermeloFraenkel augmented by any combination of the principles of Countable Choice, Dependent Choices and the Presentation Axiom. Also Markov’s principle may be added. Moreover, these properties hold effectively. For instance from a proof of a statement ∀n ∈ ω ∃m ∈ ω ϕ(n, m) one can effectively construct an index e of a recursive function such that ∀n ∈ ω ϕ(n, {e}(n)) is provable. Thus we have an explicit method of witness and program extraction from proofs involving choice principles. As for the proof technique, this paper is a continuation of [32]. [32] introduced a selfvalidating semantics for CZF that combines realizability for extensional set theory and truth.
Uniqueness, Continuity, and Existence of Implicit Functions in Constructive Analysis
"... Abstract. We extract a quantitative variant of uniqueness from the usual hypotheses of the implicit functions theorem. This leads not only to an a priori proof of continuity, but also to an alternative, fully constructive existence proof. 1 ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
Abstract. We extract a quantitative variant of uniqueness from the usual hypotheses of the implicit functions theorem. This leads not only to an a priori proof of continuity, but also to an alternative, fully constructive existence proof. 1
3 The Axiom of Multiple Choice and Models for Constructive Set Theory
, 2013
"... ar ..."
(Show Context)