Results 1  10
of
495
Object Recognition from Local ScaleInvariant Features
 PROC. OF THE INTERNATIONAL CONFERENCE ON COMPUTER VISION, CORFU
, 1999
"... An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons i ..."
Abstract

Cited by 1655 (13 self)
 Add to MetaCart
An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearestneighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a lowresidual leastsquares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partiallyoccluded images with a computation time of under 2 seconds.
Local grayvalue invariants for image retrieval
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1997
"... Abstract—This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficie ..."
Abstract

Cited by 462 (22 self)
 Add to MetaCart
Abstract—This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficient retrieval from a database of more than 1,000 images. Experimental results show correct retrieval in the case of partial visibility, similarity transformations, extraneous features, and small perspective deformations. Index Terms—Image retrieval, image indexing, graylevel invariants, matching, interest points. 1
Determining the Epipolar Geometry and its Uncertainty: A Review
 International Journal of Computer Vision
, 1998
"... Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3×3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two i ..."
Abstract

Cited by 326 (7 self)
 Add to MetaCart
Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3&times;3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two images, and its determination is very important in many applications such as scene modeling and vehicle navigation. This paper gives an introduction to the epipolar geometry, and provides a complete review of the current techniques for estimating the fundamental matrix and its uncertainty. A wellfounded measure is proposed to compare these techniques. Projective reconstruction is also reviewed. The software which we have developed for this review is available on the Internet.
Evaluation of Interest Point Detectors
, 2000
"... Many different lowlevel feature detectors exist and it is widely agreed that the evaluation of detectors is important. In this paper we introduce two evaluation criteria for interest points: repeatability rate and information content. Repeatability rate evaluates the geometric stability under diff ..."
Abstract

Cited by 300 (7 self)
 Add to MetaCart
Many different lowlevel feature detectors exist and it is widely agreed that the evaluation of detectors is important. In this paper we introduce two evaluation criteria for interest points: repeatability rate and information content. Repeatability rate evaluates the geometric stability under different transformations. Information content measures the distinctiveness of features. Different interest point detectors are compared using these two criteria. We determine which detector gives the best results and show that it satisfies the criteria well.
MLESAC: A New Robust Estimator with Application to Estimating Image Geometry
 Computer Vision and Image Understanding
, 2000
"... A new method is presented for robustly estimating multiple view relations from point correspondences. The method comprises two parts. The first is a new robust estimator MLESAC which is a generalization of the RANSAC estimator. It adopts the same sampling strategy as RANSAC to generate putative solu ..."
Abstract

Cited by 249 (9 self)
 Add to MetaCart
A new method is presented for robustly estimating multiple view relations from point correspondences. The method comprises two parts. The first is a new robust estimator MLESAC which is a generalization of the RANSAC estimator. It adopts the same sampling strategy as RANSAC to generate putative solutions, but chooses the solution that maximizes the likelihood rather than just the number of inliers. The second part of the algorithm is a general purpose method for automatically parameterizing these relations, using the output of MLESAC. A difficulty with multiview image relations is that there are often nonlinear constraints between the parameters, making optimization a difficult task. The parameterization method overcomes the difficulty of nonlinear constraints and conducts a constrained optimization. The method is general and its use is illustrated for the estimation of fundamental matrices, image–image homographies, and quadratic transformations. Results are given for both synthetic and real images. It is demonstrated that the method gives results equal or superior to those of previous approaches. c ○ 2000 Academic Press 1.
View morphing
 In Computer Graphics (SIGGRAPH’96
, 1996
"... Image morphing techniques can generate compelling 2D transitions between images. However, differences in object pose or viewpoint often cause unnatural distortions in image morphs that are difficult to correct manually. Using basic principles of projective geometry, this paper introduces a simple ex ..."
Abstract

Cited by 236 (20 self)
 Add to MetaCart
Image morphing techniques can generate compelling 2D transitions between images. However, differences in object pose or viewpoint often cause unnatural distortions in image morphs that are difficult to correct manually. Using basic principles of projective geometry, this paper introduces a simple extension to image morphing that correctly handles 3D projective camera and scene transformations. The technique, called view morphing, works by prewarping two images prior to computing a morph and then postwarping the interpolated images. Because no knowledge of 3D shape is required, the technique may be applied to photographs and drawings, as well as rendered scenes. The ability to synthesize changes both in viewpoint and image structure affords a wide variety of interesting 3D effects via simple image transformations.
Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting
 Image and Vision Computing
, 1997
"... : Almost all problems in computer vision are related in one form or another to the problem of estimating parameters from noisy data. In this tutorial, we present what is probably the most commonly used techniques for parameter estimation. These include linear leastsquares (pseudoinverse and eigen ..."
Abstract

Cited by 200 (6 self)
 Add to MetaCart
: Almost all problems in computer vision are related in one form or another to the problem of estimating parameters from noisy data. In this tutorial, we present what is probably the most commonly used techniques for parameter estimation. These include linear leastsquares (pseudoinverse and eigen analysis); orthogonal leastsquares; gradientweighted leastsquares; biascorrected renormalization; Kalman øltering; and robust techniques (clustering, regression diagnostics, Mestimators, least median of squares). Particular attention has been devoted to discussions about the choice of appropriate minimization criteria and the robustness of the dioeerent techniques. Their application to conic øtting is described. Keywords: Parameter estimation, Leastsquares, Bias correction, Kalman øltering, Robust regression (R#sum# : tsvp) Unite de recherche INRIA SophiaAntipolis 2004 route des Lucioles, BP 93, 06902 SOPHIAANTIPOLIS Cedex (France) Telephone : (33) 93 65 77 77  Telecopie : (33) 9...
On the geometry and algebra of the point and line correspondences between N images
, 1995
"... We explore the geometric and algebraic relations that exist between correspondences of points and lines in an arbitrary number of images. We propose to use the formalism of the GrassmannCayley algebra as the simplest way to make both geometric and algebraic statements in a very synthetic and effect ..."
Abstract

Cited by 148 (6 self)
 Add to MetaCart
We explore the geometric and algebraic relations that exist between correspondences of points and lines in an arbitrary number of images. We propose to use the formalism of the GrassmannCayley algebra as the simplest way to make both geometric and algebraic statements in a very synthetic and effective way (i.e. allowing actual computation if needed). We have a fairly complete picture of the situation in the case of points: there are only three types of algebraic relations which are satisfied by the coordinates of the images of a 3D point: bilinear relations arising when we consider pairs of images among the N and which are the wellknown epipolar constraints, trilinear relations arising when we consider triples of images among the N , and quadrilinear relations arising when we consider fourtuples of images among the N . In the case of lines, we show how the traditional perspective projection equation can be suitably generalized and that in the case of three images there exist two in...