Results 1  10
of
545
Object Recognition from Local ScaleInvariant Features
"... An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in ..."
Abstract

Cited by 2673 (13 self)
 Add to MetaCart
(Show Context)
An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearestneighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a lowresidual leastsquares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partiallyoccluded images with a computation time of under 2 seconds.
Local grayvalue invariants for image retrieval
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1997
"... Abstract—This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficie ..."
Abstract

Cited by 545 (28 self)
 Add to MetaCart
(Show Context)
Abstract—This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficient retrieval from a database of more than 1,000 images. Experimental results show correct retrieval in the case of partial visibility, similarity transformations, extraneous features, and small perspective deformations. Index Terms—Image retrieval, image indexing, graylevel invariants, matching, interest points. 1
Evaluation of Interest Point Detectors
, 2000
"... Many different lowlevel feature detectors exist and it is widely agreed that the evaluation of detectors is important. In this paper we introduce two evaluation criteria for interest points: repeatability rate and information content. Repeatability rate evaluates the geometric stability under diff ..."
Abstract

Cited by 410 (8 self)
 Add to MetaCart
(Show Context)
Many different lowlevel feature detectors exist and it is widely agreed that the evaluation of detectors is important. In this paper we introduce two evaluation criteria for interest points: repeatability rate and information content. Repeatability rate evaluates the geometric stability under different transformations. Information content measures the distinctiveness of features. Different interest point detectors are compared using these two criteria. We determine which detector gives the best results and show that it satisfies the criteria well.
Determining the Epipolar Geometry and its Uncertainty: A Review
 International Journal of Computer Vision
, 1998
"... Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3×3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two i ..."
Abstract

Cited by 401 (9 self)
 Add to MetaCart
Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3&times;3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two images, and its determination is very important in many applications such as scene modeling and vehicle navigation. This paper gives an introduction to the epipolar geometry, and provides a complete review of the current techniques for estimating the fundamental matrix and its uncertainty. A wellfounded measure is proposed to compare these techniques. Projective reconstruction is also reviewed. The software which we have developed for this review is available on the Internet.
MLESAC: A New Robust Estimator with Application to Estimating Image Geometry
 Computer Vision and Image Understanding
, 2000
"... A new method is presented for robustly estimating multiple view relations from point correspondences. The method comprises two parts. The first is a new robust estimator MLESAC which is a generalization of the RANSAC estimator. It adopts the same sampling strategy as RANSAC to generate putative solu ..."
Abstract

Cited by 359 (10 self)
 Add to MetaCart
(Show Context)
A new method is presented for robustly estimating multiple view relations from point correspondences. The method comprises two parts. The first is a new robust estimator MLESAC which is a generalization of the RANSAC estimator. It adopts the same sampling strategy as RANSAC to generate putative solutions, but chooses the solution that maximizes the likelihood rather than just the number of inliers. The second part of the algorithm is a general purpose method for automatically parameterizing these relations, using the output of MLESAC. A difficulty with multiview image relations is that there are often nonlinear constraints between the parameters, making optimization a difficult task. The parameterization method overcomes the difficulty of nonlinear constraints and conducts a constrained optimization. The method is general and its use is illustrated for the estimation of fundamental matrices, image–image homographies, and quadratic transformations. Results are given for both synthetic and real images. It is demonstrated that the method gives results equal or superior to those of previous approaches. c ○ 2000 Academic Press 1.
View morphing
 In Computer Graphics (SIGGRAPH’96
, 1996
"... Image morphing techniques can generate compelling 2D transitions between images. However, differences in object pose or viewpoint often cause unnatural distortions in image morphs that are difficult to correct manually. Using basic principles of projective geometry, this paper introduces a simple ex ..."
Abstract

Cited by 279 (20 self)
 Add to MetaCart
Image morphing techniques can generate compelling 2D transitions between images. However, differences in object pose or viewpoint often cause unnatural distortions in image morphs that are difficult to correct manually. Using basic principles of projective geometry, this paper introduces a simple extension to image morphing that correctly handles 3D projective camera and scene transformations. The technique, called view morphing, works by prewarping two images prior to computing a morph and then postwarping the interpolated images. Because no knowledge of 3D shape is required, the technique may be applied to photographs and drawings, as well as rendered scenes. The ability to synthesize changes both in viewpoint and image structure affords a wide variety of interesting 3D effects via simple image transformations.
Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting
, 1995
"... Almost all problems in computer vision are related in one form or another to the problem of estimating parameters from noisy data. In this tutorial, we present what is probably the most commonly used techniques for parameter estimation. These include linear leastsquares (pseudoinverse and eigen a ..."
Abstract

Cited by 276 (8 self)
 Add to MetaCart
(Show Context)
Almost all problems in computer vision are related in one form or another to the problem of estimating parameters from noisy data. In this tutorial, we present what is probably the most commonly used techniques for parameter estimation. These include linear leastsquares (pseudoinverse and eigen analysis); orthogonal leastsquares; gradientweighted leastsquares; biascorrected renormalization; Kalman filtering; and robust techniques (clustering, regression diagnostics, Mestimators, least median of squares). Particular attention has been devoted to discussions about the choice of appropriate minimization criteria and the robustness of the different techniques. Their application to conic fitting is described.
Automatic camera recovery for closed or open image sequences
 In Proceedings of the European Conference on Computer Vision
, 1998
"... ..."
(Show Context)
In Defense of the EightPoint Algorithm
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1997
"... Abstract—The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the eightpoint algorithm is a frequently cited method for computing the fundamental matrix from a set of eight or more point matches. It has the advantage of simplicity of implementati ..."
Abstract

Cited by 203 (1 self)
 Add to MetaCart
(Show Context)
Abstract—The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the eightpoint algorithm is a frequently cited method for computing the fundamental matrix from a set of eight or more point matches. It has the advantage of simplicity of implementation. The prevailing view is, however, that it is extremely susceptible to noise and hence virtually useless for most purposes. This paper challenges that view, by showing that by preceding the algorithm with a very simple normalization (translation and scaling) of the coordinates of the matched points, results are obtained comparable with the best iterative algorithms. This improved performance is justified by theory and verified by extensive experiments on real images. Index Terms—Fundamental matrix, eightpoint algorithm, condition number, epipolar structure, stereo vision.