Results 1  10
of
264
Contentbased image retrieval at the end of the early years
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... The paper presents a review of 200 references in contentbased image retrieval. The paper starts with discussing the working conditions of contentbased retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for imag ..."
Abstract

Cited by 1144 (19 self)
 Add to MetaCart
The paper presents a review of 200 references in contentbased image retrieval. The paper starts with discussing the working conditions of contentbased retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for image retrieval systems. Step one of the review is image processing for retrieval sorted by color, texture, and local geometry. Features for retrieval are discussed next, sorted by: accumulative and global features, salient points, object and shape features, signs, and structural combinations thereof. Similarity of pictures and objects in pictures is reviewed for each of the feature types, in close connection to the types and means of feedback the user of the systems is capable of giving by interaction. We briefly discuss aspects of system engineering: databases, system architecture, and evaluation. In the concluding section, we present our view on: the driving force of the field, the heritage from computer vision, the influence on computer vision, the role of similarity and of interaction, the need for databases, the problem of evaluation, and the role of the semantic gap.
A Quantitative Analysis and Performance Study for SimilaritySearch Methods in HighDimensional Spaces
, 1998
"... For similarity search in highdimensional vector spaces (or `HDVSs'), researchers have proposed a number of new methods (or adaptations of existing methods) based, in the main, on dataspace partitioning. However, the performance of these methods generally degrades as dimensionality increases. Altho ..."
Abstract

Cited by 495 (12 self)
 Add to MetaCart
For similarity search in highdimensional vector spaces (or `HDVSs'), researchers have proposed a number of new methods (or adaptations of existing methods) based, in the main, on dataspace partitioning. However, the performance of these methods generally degrades as dimensionality increases. Although this phenomenonknown as the `dimensional curse'is well known, little or no quantitative analysis of the phenomenon is available. In this paper, we provide a detailed analysis of partitioning and clustering techniques for similarity search in HDVSs. We show formally that these methods exhibit linear complexity at high dimensionality, and that existing methods are outperformed on average by a simple sequential scan if the number of dimensions exceeds around 10. Consequently, we come up with an alternative organization based on approximations to make the unavoidable sequential scan as fast as possible. We describe a simple vector approximation scheme, called VAfile, and report on an ...
Similarity search in high dimensions via hashing
, 1999
"... The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image dat ..."
Abstract

Cited by 417 (12 self)
 Add to MetaCart
The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image databases, document collections, timeseries databases, and genome databases. Unfortunately, all known techniques for solving this problem fall prey to the \curse of dimensionality. " That is, the data structures scale poorly with data dimensionality; in fact, if the number of dimensions exceeds 10 to 20, searching in kd trees and related structures involves the inspection of a large fraction of the database, thereby doing no better than bruteforce linear search. It has been suggested that since the selection of features and the choice of a distance metric in typical applications is rather heuristic, determining an approximate nearest neighbor should su ce for most practical purposes. In this paper, we examine a novel scheme for approximate similarity search based on hashing. The basic idea is to hash the points
When Is "Nearest Neighbor" Meaningful?
 In Int. Conf. on Database Theory
, 1999
"... . We explore the effect of dimensionality on the "nearest neighbor " problem. We show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance to the fa ..."
Abstract

Cited by 295 (1 self)
 Add to MetaCart
. We explore the effect of dimensionality on the "nearest neighbor " problem. We show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance to the farthest data point. To provide a practical perspective, we present empirical results on both real and synthetic data sets that demonstrate that this effect can occur for as few as 1015 dimensions. These results should not be interpreted to mean that highdimensional indexing is never meaningful; we illustrate this point by identifying some highdimensional workloads for which this effect does not occur. However, our results do emphasize that the methodology used almost universally in the database literature to evaluate highdimensional indexing techniques is flawed, and should be modified. In particular, most such techniques proposed in the literature are not evaluated versus simple...
Distance Browsing in Spatial Databases
, 1999
"... Two different techniques of browsing through a collection of spatial objects stored in an Rtree spatial data structure on the basis of their distances from an arbitrary spatial query object are compared. The conventional approach is one that makes use of a knearest neighbor algorithm where k is kn ..."
Abstract

Cited by 293 (19 self)
 Add to MetaCart
Two different techniques of browsing through a collection of spatial objects stored in an Rtree spatial data structure on the basis of their distances from an arbitrary spatial query object are compared. The conventional approach is one that makes use of a knearest neighbor algorithm where k is known prior to the invocation of the algorithm. Thus if m#kneighbors are needed, the knearest neighbor algorithm needs to be reinvoked for m neighbors, thereby possibly performing some redundant computations. The second approach is incremental in the sense that having obtained the k nearest neighbors, the k +1 st neighbor can be obtained without having to calculate the k +1nearest neighbors from scratch. The incremental approach finds use when processing complex queries where one of the conditions involves spatial proximity (e.g., the nearest city to Chicago with population greater than a million), in which case a query engine can make use of a pipelined strategy. A general incremental nearest neighbor algorithm is presented that is applicable to a large class of hierarchical spatial data structures. This algorithm is adapted to the Rtree and its performance is compared to an existing knearest neighbor algorithm for Rtrees [45]. Experiments show that the incremental nearest neighbor algorithm significantly outperforms the knearest neighbor algorithm for distance browsing queries in a spatial database that uses the Rtree as a spatial index. Moreover, the incremental nearest neighbor algorithm also usually outperforms the knearest neighbor algorithm when applied to the knearest neighbor problem for the Rtree, although the improvement is not nearly as large as for distance browsing queries. In fact, we prove informally that, at any step in its execution, the incremental...
Approximation Algorithms for Projective Clustering
 Proceedings of the ACM SIGMOD International Conference on Management of data, Philadelphia
, 2000
"... We consider the following two instances of the projective clustering problem: Given a set S of n points in R d and an integer k ? 0; cover S by k hyperstrips (resp. hypercylinders) so that the maximum width of a hyperstrip (resp., the maximum diameter of a hypercylinder) is minimized. Let w ..."
Abstract

Cited by 247 (21 self)
 Add to MetaCart
We consider the following two instances of the projective clustering problem: Given a set S of n points in R d and an integer k ? 0; cover S by k hyperstrips (resp. hypercylinders) so that the maximum width of a hyperstrip (resp., the maximum diameter of a hypercylinder) is minimized. Let w be the smallest value so that S can be covered by k hyperstrips (resp. hypercylinders), each of width (resp. diameter) at most w : In the plane, the two problems are equivalent. It is NPHard to compute k planar strips of width even at most Cw ; for any constant C ? 0 [50]. This paper contains four main results related to projective clustering: (i) For d = 2, we present a randomized algorithm that computes O(k log k) strips of width at most 6w that cover S. Its expected running time is O(nk 2 log 4 n) if k 2 log k n; it also works for larger values of k, but then the expected running time is O(n 2=3 k 8=3 log 4 n). We also propose another algorithm that computes a c...
MindReader: Querying databases through multiple examples
 In Proc. of the 24 th VLDB Conference
, 1998
"... Users often can not easily express their queries. For example, in a multimedia/image by content setting, the user might want photographs with sunsets; in current systems, like QBIC, the user has to give a sample query, and to specify the relative importance of color, shape and texture. Even worse, t ..."
Abstract

Cited by 178 (1 self)
 Add to MetaCart
Users often can not easily express their queries. For example, in a multimedia/image by content setting, the user might want photographs with sunsets; in current systems, like QBIC, the user has to give a sample query, and to specify the relative importance of color, shape and texture. Even worse, the user might want correlations between attributes, like, for example, in a traditional, medical record database, a medical researcher might want to find "mildly overweight patients", where the implied query would be "weight/height ≈ 4 lb/inch". Our goal is to provide a userfriendly, but theoretically solid method, to handle such queries. We allow the user to give several examples, and, optionally, their 'goodness' scores, and we propose a novel method to "guess" which attributes are important, which correlations are important, and with what weight. Our contributions are twofold: (a) we formalize the problem as a minimization problem and show how to solve for the optimal solution, completely av...
The pyramidtechnique: Towards breaking and the curse of dimensionality
 In Proceedings of the 1998 ACM SIGMOD Conference on Management of Data
, 1998
"... In this paper, we propose the PyramidTechnique, a new indexing method for highdimensional data spaces. The PyramidTechnique is highly adapted to range query processing using the maximum metric Lruax. In contrast to all other index structures, the performance of the PyramidTechnique does not dete ..."
Abstract

Cited by 177 (2 self)
 Add to MetaCart
In this paper, we propose the PyramidTechnique, a new indexing method for highdimensional data spaces. The PyramidTechnique is highly adapted to range query processing using the maximum metric Lruax. In contrast to all other index structures, the performance of the PyramidTechnique does not deteriorate when processing range queries on data of higher dimensionality. The PyramidTechnique is based on a special partitioning strategy which is optimized for highdimensional data. The basic idea is to divide the data space first into 2d pyramids sharing the center point of the space as a top. In a second step, the single pyramids are cut into slices parallel to the basis of the pyramid. These slices form the data pages. Furthermore, we show that this partition provides a mapping from the given ddimensional space to a ldimensional space. Therefore, we are able to use a B+tree to manage the transformed data. As an analytical evaluation of our technique for hypercube range queries and uniform data distribution shows, the PyramidTechnique clearly outperforms index structures using other partitioning strategies. To demonstrate the practical relevance of our technique, we experimentally compared the PyramidTechnique with the Xtree, the Hilbert Rtree, and the Linear Scan. The results of our experiments using both, synthetic and real data, demonstrate that the PyramidTechnique outperforms the Xtree and the Hilbert Rtree by a factor of up to 14 (number of page accesses) and up to 2500 (total elapsed time) for range queries. 1
On the Surprising Behavior of Distance Metrics in High Dimensional Space
 Lecture Notes in Computer Science
, 2001
"... In recent years, the effect of the curse of high dimensionality has been studied in great detail on several problems such as clustering, nearest neighbor search, and indexing. In high dimensional space the data becomes sparse, and traditional indexing and algorithmic techniques fail from a efficienc ..."
Abstract

Cited by 151 (3 self)
 Add to MetaCart
In recent years, the effect of the curse of high dimensionality has been studied in great detail on several problems such as clustering, nearest neighbor search, and indexing. In high dimensional space the data becomes sparse, and traditional indexing and algorithmic techniques fail from a efficiency and/or effectiveness perspective. Recent research results show that in high dimensional space, the concept of proximity, distance or nearest neighbor may not even be qualitatively meaningful. In this paper, we view the dimensionality curse from the point of view of the distance metrics which are used to measure the similarity between objects. We specifically examine the behavior of the commonly used Lk norm and show that the problem of meaningfulness in high dimensionality is sensitive to the value of k. For example, this means that the Manhattan distance metric (L1 norm) is consistently more preferable than the Euclidean distance metric (L2 norm) for high dimensional data mining applications. Using the intuition derived from our analysis, we introduce and examine a natural extension of the Lk norm to fractional distance metrics. We show that the fractional distance metric provides more meaningful results both from the theoretical and empirical perspective. The results show that fractional distance metrics can significantly improve the effectiveness of standard clustering algorithms such as the kmeans algorithm. 1
What is the Nearest Neighbor in High Dimensional Spaces?
, 2000
"... Nearest neighbor search in high dimensional spaces is an interesting and important problem which is relevant for a wide variety of novel database applications. As recent results show, however, the problem is a very difficult one, not only with regards to the performance issue but also to the quality ..."
Abstract

Cited by 110 (8 self)
 Add to MetaCart
Nearest neighbor search in high dimensional spaces is an interesting and important problem which is relevant for a wide variety of novel database applications. As recent results show, however, the problem is a very difficult one, not only with regards to the performance issue but also to the quality issue. In this paper, we discuss the quality issue and identify a new generalized notion of nearest neighbor search as the relevant problem in high dimensional space. In contrast to previous approaches, our new notion of nearest neighbor search does not treat all dimensions equally but uses a quality criterion to select relevant dimensions (projections) with respect to the given query. As an example for a useful quality criterion, we rate how well the data is clustered around the query point within the selected projection. We then propose an efficient and effective algorithm to solve the generalized nearest neighbor problem. Our experiments based on a number of real and synthetic data sets show that our new approach provides new insights into the nature of nearest neighbor search on high dimensional data.