Results 1  10
of
38
SDPT3  a MATLAB software package for semidefinite programming
 OPTIMIZATION METHODS AND SOFTWARE
, 1999
"... This software package is a Matlab implementation of infeasible pathfollowing algorithms for solving standard semidefinite programming (SDP) problems. Mehrotratype predictorcorrector variants are included. Analogous algorithms for the homogeneous formulation of the standard SDP problem are also imp ..."
Abstract

Cited by 218 (11 self)
 Add to MetaCart
This software package is a Matlab implementation of infeasible pathfollowing algorithms for solving standard semidefinite programming (SDP) problems. Mehrotratype predictorcorrector variants are included. Analogous algorithms for the homogeneous formulation of the standard SDP problem are also implemented. Four types of search directions are available, namely, the AHO, HKM, NT, and GT directions. A few classes of SDP problems are included as well. Numerical results for these classes show that our algorithms are fairly efficient and robust on problems with dimensions of the order of a few hundreds.
Linear Programming: Foundations and Extensions
, 1996
"... under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. ISBN 0000000000 The text for this book was formated in Time ..."
Abstract

Cited by 141 (0 self)
 Add to MetaCart
under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. ISBN 0000000000 The text for this book was formated in TimesRoman and the mathematics was formated in Michael Spivak’s Mathtimes using AMSL ATEX(which is a macro package for Leslie Lamport’s L ATEX, which itself is a macro package for Donald Knuth’s TEXtext formatting system) and converted from deviceindependent to postscript format using DVIPS. The figures were produced using SHOWCASE on a Silicon Graphics, Inc. workstation and were incorporated into the text as encapsulated postscript files with the macro package called PSFIG.TEX. To my parents, Howard and Marilyn, my dear wife, Krisadee, and the babes, Marisa and Diana Contents
Implementation of Interior Point Methods for Large Scale Linear Programming
 in Interior Point Methods in Mathematical Programming
, 1996
"... In the past 10 years the interior point methods (IPM) for linear programming have gained extraordinary interest as an alternative to the sparse simplex based methods. This has initiated a fruitful competition between the two types of algorithms which has lead to very efficient implementations on bot ..."
Abstract

Cited by 70 (22 self)
 Add to MetaCart
In the past 10 years the interior point methods (IPM) for linear programming have gained extraordinary interest as an alternative to the sparse simplex based methods. This has initiated a fruitful competition between the two types of algorithms which has lead to very efficient implementations on both sides. The significant difference between interior point and simplex based methods is reflected not only in the theoretical background but also in the practical implementation. In this paper we give an overview of the most important characteristics of advanced implementations of interior point methods. First, we present the infeasibleprimaldual algorithm which is widely considered the most efficient general purpose IPM. Our discussion includes various algorithmic enhancements of the basic algorithm. The only shortcoming of the "traditional" infeasibleprimaldual algorithm is to detect a possible primal or dual infeasibility of the linear program. We discuss how this problem can be solve...
Solving LargeScale Linear Programs by InteriorPoint Methods Under the MATLAB Environment
 Optimization Methods and Software
, 1996
"... In this paper, we describe our implementation of a primaldual infeasibleinteriorpoint algorithm for largescale linear programming under the MATLAB 1 environment. The resulting software is called LIPSOL  Linearprogramming InteriorPoint SOLvers. LIPSOL is designed to take the advantages of M ..."
Abstract

Cited by 60 (2 self)
 Add to MetaCart
In this paper, we describe our implementation of a primaldual infeasibleinteriorpoint algorithm for largescale linear programming under the MATLAB 1 environment. The resulting software is called LIPSOL  Linearprogramming InteriorPoint SOLvers. LIPSOL is designed to take the advantages of MATLAB's sparsematrix functions and external interface facilities, and of existing Fortran sparse Cholesky codes. Under the MATLAB environment, LIPSOL inherits a high degree of simplicity and versatility in comparison to its counterparts in Fortran or C language. More importantly, our extensive computational results demonstrate that LIPSOL also attains an impressive performance comparable with that of efficient Fortran or C codes in solving largescale problems. In addition, we discuss in detail a technique for overcoming numerical instability in Cholesky factorization at the endstage of iterations in interiorpoint algorithms. Keywords: Linear programming, PrimalDual infeasibleinteriorp...
A QMRbased interiorpoint algorithm for solving linear programs
 Math. Programming
, 1994
"... A new approach for the implementation of interiorpoint methods for solving linear programs is proposed. Its main feature is the iterative solution of the symmetric, but highly indefinite 2\Theta2block systems of linear equations that arise within the interiorpoint algorithm. These linear systems ..."
Abstract

Cited by 39 (4 self)
 Add to MetaCart
A new approach for the implementation of interiorpoint methods for solving linear programs is proposed. Its main feature is the iterative solution of the symmetric, but highly indefinite 2\Theta2block systems of linear equations that arise within the interiorpoint algorithm. These linear systems are solved by a symmetric variant of the quasiminimal residual (QMR) algorithm, which is an iterative solver for general linear systems. The symmetric QMR algorithm can be combined with indefinite preconditioners, which is crucial for the efficient solution of highly indefinite linear systems, yet it still fully exploits the symmetry of the linear systems to be solved. To support the use of the symmetric QMR iteration, a novel stable reduction of the original unsymmetric 3 \Theta 3block systems to symmetric 2 \Theta 2block systems is introduced, and a measure for a low relative accuracy for the solution of these linear systems within the interiorpoint algorithm is proposed. Some indefini...
Presolve Analysis of Linear Programs Prior to Applying an Interior Point Method
 INFORMS Journal on Computing
, 1994
"... Several issues concerning an analysis of large and sparse linear programming problems prior to solving them with an interior point based optimizer are addressed in this paper. Three types of presolve procedures are distinguished. Routines from the first class repeatedly analyze an LP problem formula ..."
Abstract

Cited by 34 (6 self)
 Add to MetaCart
Several issues concerning an analysis of large and sparse linear programming problems prior to solving them with an interior point based optimizer are addressed in this paper. Three types of presolve procedures are distinguished. Routines from the first class repeatedly analyze an LP problem formulation: eliminate empty or singleton rows and columns, look for primal and dual forcing or dominated constraints, tighten bounds for variables and shadow prices or just the opposite, relax them to find implied free variables. The second type of analysis aims at reducing a fillin of the Cholesky factor of the normal equations matrix used to compute orthogonal projections and includes a heuristic for increasing the sparsity of the LP constraint matrix and a technique of splitting dense columns in it. Finally, routines from the third class detect, and remove, different linear dependecies of rows and columns in a constraint matrix. Computational results on problems from the Netlib collection, inc...
Homogeneous InteriorPoint Algorithms for Semidefinite Programming
 Department of Mathematics, The University of Iowa
, 1995
"... A simple homogeneous primaldual feasibility model is proposed for semidefinite programming (SDP) problems. Two infeasibleinteriorpoint algorithms are applied to the homogeneous formulation. The algorithms do not need big M initialization. If the original SDP problem has a solution, then both algo ..."
Abstract

Cited by 33 (8 self)
 Add to MetaCart
A simple homogeneous primaldual feasibility model is proposed for semidefinite programming (SDP) problems. Two infeasibleinteriorpoint algorithms are applied to the homogeneous formulation. The algorithms do not need big M initialization. If the original SDP problem has a solution, then both algorithms find an fflapproximate solution (i.e., a solution with residual error less than or equal to ffl) in at most O( p n ln(ae ffl 0 =ffl)) steps, where ae is the trace norm of a solution and ffl 0 is the residual error at the (normalized) starting point. A simple way of monitoring possible infeasibility of the original SDP problem is provided such that in at most O( p n ln(aeffl 0 =ffl)) steps either an fflapproximate solution is obtained, or it is determined that there is no solution with trace norm less than or equal to a given number ae ? 0. Key Words: semidefinite programming, homogeneous interiorpoint algorithm, polynomial complexity. Abbreviated Title: Homogeneous al...
On a Homogeneous Algorithm for the Monotone Complementarity Problem
 Mathematical Programming
, 1995
"... We present a generalization of a homogeneous selfdual linear programming (LP) algorithm to solving the monotone complementarity problem (MCP). The algorithm does not need to use any "bigM" parameter or twophase method, and it generates either a solution converging towards feasibility and compleme ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
We present a generalization of a homogeneous selfdual linear programming (LP) algorithm to solving the monotone complementarity problem (MCP). The algorithm does not need to use any "bigM" parameter or twophase method, and it generates either a solution converging towards feasibility and complementarity simultaneously or a certificate proving infeasibility. Moreover, if the MCP is polynomially solvable with an interior feasible starting point, then it can be polynomially solved without using or knowing such information at all. To our knowledge, this is the first interiorpoint and infeasiblestarting algorithm for solving the MCP that possesses these desired features. Preliminary computational results are presented. Key words: Monotone complementarity problem, homogeneous and selfdual, infeasiblestarting algorithm. Running head: A homogeneous algorithm for MCP. Department of Management, Odense University, Campusvej 55, DK5230 Odense M, Denmark, email: eda@busieco.ou.dk. y De...
Modified Cholesky Factorizations In InteriorPoint Algorithms For Linear Programming
 SIAM Journal on Optimization
"... . We investigate a modified Cholesky algorithm typical of those used in most interiorpoint codes for linear programming. Choleskybased interiorpoint codes are popular for three reasons: their implementation requires only minimal changes to standard sparse Cholesky algorithms (allowing us to take f ..."
Abstract

Cited by 24 (2 self)
 Add to MetaCart
. We investigate a modified Cholesky algorithm typical of those used in most interiorpoint codes for linear programming. Choleskybased interiorpoint codes are popular for three reasons: their implementation requires only minimal changes to standard sparse Cholesky algorithms (allowing us to take full advantage of software written by specialists in that area); they tend to be more efficient than competing approaches that use alternative factorizations; and they perform robustly on most practical problems, yielding good interiorpoint steps even when the coefficient matrix of the main linear system to be solved for the step components is illconditioned. We investigate this surprisingly robust performance by using analytical tools from matrix perturbation theory and error analysis, illustrating our results with computational experiments. Finally, we point out the potential limitations of this approach. Key words. interiorpoint algorithms and software, Cholesky factorization, matrix p...
A PathFollowing InteriorPoint Algorithm for Linear and Quadratic Problems
 Preprint MCSP4011293, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439
, 1995
"... We describe an algorithm for the monotone linear complementarity problem (LCP) that converges from any positive, not necessarily feasible, starting point and exhibits polynomial complexity if some additional assumptions are made on the starting point. If the problem has a strictly complementary solu ..."
Abstract

Cited by 21 (4 self)
 Add to MetaCart
We describe an algorithm for the monotone linear complementarity problem (LCP) that converges from any positive, not necessarily feasible, starting point and exhibits polynomial complexity if some additional assumptions are made on the starting point. If the problem has a strictly complementary solution, the method converges subquadratically. We show that the algorithm and its convergence properties extend readily to the mixed monotone linear complementarity problem and, hence, to all the usual formulations of the linear programming and convex quadratic programming problems. 1 Introduction The monotone linear complementarityproblem (LCP) is to find a vector pair (x; y) 2 IR n \ThetaIR n such that y = Mx+ q; (x; y) 0; x T y = 0; (1) where q 2 IR n and M is an n \Theta n positive semidefinite (p.s.d.) matrix. The mixed monotone linear complementarity problem (MLCP) is to find a vector triple (x; y; z) 2 IR n \Theta IR n \Theta IR m such that " y 0 # = " M 11 M 12 ...