Results 1  10
of
18
Learning Bayesian networks: The combination of knowledge and statistical data
 Machine Learning
, 1995
"... We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simpl ..."
Abstract

Cited by 953 (36 self)
 Add to MetaCart
We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simplify the encoding of a user’s prior knowledge. In particular, a user can express his knowledge—for the most part—as a single prior Bayesian network for the domain. 1
A Tutorial on Learning Bayesian Networks
 Communications of the ACM
, 1995
"... We examine a graphical representation of uncertain knowledge called a Bayesian network. The representation is easy to construct and interpret, yet has formal probabilistic semantics making it suitable for statistical manipulation. We show how we can use the representation to learn new knowledge by c ..."
Abstract

Cited by 330 (13 self)
 Add to MetaCart
We examine a graphical representation of uncertain knowledge called a Bayesian network. The representation is easy to construct and interpret, yet has formal probabilistic semantics making it suitable for statistical manipulation. We show how we can use the representation to learn new knowledge by combining domain knowledge with statistical data. 1 Introduction Many techniques for learning rely heavily on data. In contrast, the knowledge encoded in expert systems usually comes solely from an expert. In this paper, we examine a knowledge representation, called a Bayesian network, that lets us have the best of both worlds. Namely, the representation allows us to learn new knowledge by combining expert domain knowledge and statistical data. A Bayesian network is a graphical representation of uncertain knowledge that most people find easy to construct and interpret. In addition, the representation has formal probabilistic semantics, making it suitable for statistical manipulation (Howard,...
ANCESTRAL GRAPH MARKOV MODELS
, 2002
"... This paper introduces a class of graphical independence models that is closed under marginalization and conditioning but that contains all DAG independence models. This class of graphs, called maximal ancestral graphs, has two attractive features: there is at most one edge between each pair of verti ..."
Abstract

Cited by 79 (16 self)
 Add to MetaCart
This paper introduces a class of graphical independence models that is closed under marginalization and conditioning but that contains all DAG independence models. This class of graphs, called maximal ancestral graphs, has two attractive features: there is at most one edge between each pair of vertices; every missing edge corresponds to an independence relation. These features lead to a simple parameterization of the corresponding set of distributions in the Gaussian case.
A characterization of the Dirichlet distribution through global and local parameter independence
 THE ANNALS OF STATISTICS
, 1997
"... ..."
Efficient markov network structure discovery using independence tests
 In Proc SIAM Data Mining
, 2006
"... We present two algorithms for learning the structure of a Markov network from discrete data: GSMN and GSIMN. Both algorithms use statistical conditional independence tests on data to infer the structure by successively constraining the set of structures consistent with the results of these tests. GS ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
(Show Context)
We present two algorithms for learning the structure of a Markov network from discrete data: GSMN and GSIMN. Both algorithms use statistical conditional independence tests on data to infer the structure by successively constraining the set of structures consistent with the results of these tests. GSMN is a natural adaptation of the GrowShrink algorithm of Margaritis and Thrun for learning the structure of Bayesian networks. GSIMN extends GSMN by additionally exploiting Pearl’s wellknown properties of conditional independence relations to infer novel independencies from known independencies, thus avoiding the need to perform these tests. Experiments on artificial and real data sets show GSIMN can yield savings of up to 70 % with respect to GSMN, while generating a Markov network with comparable or in several cases considerably improved quality. In addition
Conditional Independences among Four Random Variables III: Final Conclusion
 COMBINATORICS, PROBABILITY AND COMPUTING
, 1999
"... ..."
On equivalence of Markov properties over undirected graphs
 Journal of Applied Probability
, 1992
"... ..."
2012/47 A Stochastic Independence Approach for Different Measures of Concentration and Specialization
, 2012
"... A stochastic independence approach for different measures of concentration and specialization ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
(Show Context)
A stochastic independence approach for different measures of concentration and specialization