Results 1  10
of
24
Fast maximum margin matrix factorization for collaborative prediction
 In Proceedings of the 22nd International Conference on Machine Learning (ICML
, 2005
"... Maximum Margin Matrix Factorization (MMMF) was recently suggested (Srebro et al., 2005) as a convex, infinite dimensional alternative to lowrank approximations and standard factor models. MMMF can be formulated as a semidefinite programming (SDP) and learned using standard SDP solvers. However, cu ..."
Abstract

Cited by 241 (8 self)
 Add to MetaCart
(Show Context)
Maximum Margin Matrix Factorization (MMMF) was recently suggested (Srebro et al., 2005) as a convex, infinite dimensional alternative to lowrank approximations and standard factor models. MMMF can be formulated as a semidefinite programming (SDP) and learned using standard SDP solvers. However, current SDP solvers can only handle MMMF problems on matrices of dimensionality up to a few hundred. Here, we investigate a direct gradientbased optimization method for MMMF and demonstrate it on large collaborative prediction problems. We compare against results obtained by Marlin (2004) and find that MMMF substantially outperforms all nine methods he tested. 1.
The Convex Geometry of Linear Inverse Problems
, 2010
"... In applications throughout science and engineering one is often faced with the challenge of solving an illposed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constr ..."
Abstract

Cited by 181 (18 self)
 Add to MetaCart
In applications throughout science and engineering one is often faced with the challenge of solving an illposed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered are those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include wellstudied cases such as sparse vectors (e.g., signal processing, statistics) and lowrank matrices (e.g., control, statistics), as well as several others including sums of a few permutations matrices (e.g., ranked elections, multiobject tracking), lowrank tensors (e.g., computer vision, neuroscience), orthogonal matrices (e.g., machine learning), and atomic measures (e.g., system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial
Sorted by: