Results 1  10
of
130
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 319 (26 self)
 Add to MetaCart
Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little systematic guidance associated with these methods for solving important practical questions that arise in cluster analysis, such as \How many clusters are there?", "Which clustering method should be used?" and \How should outliers be handled?". We outline a general methodology for modelbased clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster recovery from noisy data, and spatial density estimation. Finally, we mention limitations of the methodology, a...
Bayesian methods for hidden Markov models: recursive computing in the 21st century
 Journal of the American Statistical Association
, 2002
"... ..."
Markov Chain Monte Carlo methods and the label switching problem in Bayesian mixture modelling
 Statistical Science
"... Abstract. In the past ten years there has been a dramatic increase of interest in the Bayesian analysis of finite mixture models. This is primarily because of the emergence of Markov chain Monte Carlo (MCMC) methods. While MCMC provides a convenient way to draw inference from complicated statistical ..."
Abstract

Cited by 59 (4 self)
 Add to MetaCart
Abstract. In the past ten years there has been a dramatic increase of interest in the Bayesian analysis of finite mixture models. This is primarily because of the emergence of Markov chain Monte Carlo (MCMC) methods. While MCMC provides a convenient way to draw inference from complicated statistical models, there are many, perhaps underappreciated, problems associated with the MCMC analysis of mixtures. The problems are mainly caused by the nonidentifiability of the components under symmetric priors, which leads to socalled label switching in the MCMC output. This means that ergodic averages of component specific quantities will be identical and thus useless for inference. We review the solutions to the label switching problem, such as artificial identifiability constraints, relabelling algorithms and label invariant loss functions. We also review various MCMC sampling schemes that have been suggested for mixture models and discuss posterior sensitivity to prior specification.
Deviance information criteria for missing data models
 Bayesian Analysis
, 2006
"... The deviance information criterion (DIC) introduced by Spiegelhalter et al. (2002) for model assessment and model comparison is directly inspired by linear and generalised linear models, but it is open to different possible variations in the setting of missing data models, depending in particular on ..."
Abstract

Cited by 42 (5 self)
 Add to MetaCart
The deviance information criterion (DIC) introduced by Spiegelhalter et al. (2002) for model assessment and model comparison is directly inspired by linear and generalised linear models, but it is open to different possible variations in the setting of missing data models, depending in particular on whether or not the missing variables are treated as parameters. In this paper, we reassess the criterion for such models and compare different DIC constructions, testing the behaviour of these various extensions in the cases of mixtures of distributions and random effect models.
Estimating mixtures of regressions
"... In this paper, we show how Bayesian inference for switching regression models and their generalisations can be achieved by the specification of loss functions which overcome the label switching problem common to all mixture models. We also derive an extension to models where the number of components ..."
Abstract

Cited by 37 (2 self)
 Add to MetaCart
In this paper, we show how Bayesian inference for switching regression models and their generalisations can be achieved by the specification of loss functions which overcome the label switching problem common to all mixture models. We also derive an extension to models where the number of components in the mixture is unknown, based on the birthand death technique developed in Stephens (2000a). The methods are illustrated on various real datasets.
Variable selection in clustering via Dirichlet process mixture models
, 2006
"... The increased collection of highdimensional data in various fields has raised a strong interest in clustering algorithms and variable selection procedures. In this paper, we propose a modelbased method that addresses the two problems simultaneously. We introduce a latent binary vector to identify ..."
Abstract

Cited by 27 (3 self)
 Add to MetaCart
The increased collection of highdimensional data in various fields has raised a strong interest in clustering algorithms and variable selection procedures. In this paper, we propose a modelbased method that addresses the two problems simultaneously. We introduce a latent binary vector to identify discriminating variables and use Dirichlet process mixture models to define the cluster structure. We update the variable selection index using a Metropolis algorithm and obtain inference on the cluster structure via a splitmerge Markov chain Monte Carlo technique. We explore the performance of the methodology on simulated data and illustrate an application with a dna microarray study.
Estimating the integrated likelihood via posterior simulation using the harmonic mean identity
 Bayesian Statistics
, 2007
"... The integrated likelihood (also called the marginal likelihood or the normalizing constant) is a central quantity in Bayesian model selection and model averaging. It is defined as the integral over the parameter space of the likelihood times the prior density. The Bayes factor for model comparison a ..."
Abstract

Cited by 26 (2 self)
 Add to MetaCart
(Show Context)
The integrated likelihood (also called the marginal likelihood or the normalizing constant) is a central quantity in Bayesian model selection and model averaging. It is defined as the integral over the parameter space of the likelihood times the prior density. The Bayes factor for model comparison and Bayesian testing is a ratio of integrated likelihoods, and the model weights in Bayesian model averaging are proportional to the integrated likelihoods. We consider the estimation of the integrated likelihood from posterior simulation output, aiming at a generic method that uses only the likelihoods from the posterior simulation iterations. The key is the harmonic mean identity, which says that the reciprocal of the integrated likelihood is equal to the posterior harmonic mean of the likelihood. The simplest estimator based on the identity is thus the harmonic mean of the likelihoods. While this is an unbiased and simulationconsistent estimator, its reciprocal can have infinite variance and so it is unstable in general. We describe two methods for stabilizing the harmonic mean estimator. In the first one, the parameter space is reduced in such a way that the modified estimator involves a harmonic mean of heaviertailed densities, thus resulting in a finite variance estimator. The resulting
An MCMC Sampling Approach to Estimation of Nonstationary Hidden Markov Models
 IEEE Trans. Signal Processing
, 2002
"... Hidden Markov models (HMMs) represent a very important tool for analysis of signals and systems. In the past two decades, HMMs have attracted the attention of various research communities, including the ones in statistics, engineering, and mathematics. Their extensive use in signal processing and, i ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
Hidden Markov models (HMMs) represent a very important tool for analysis of signals and systems. In the past two decades, HMMs have attracted the attention of various research communities, including the ones in statistics, engineering, and mathematics. Their extensive use in signal processing and, in particular, speech processing is well documented. A major weakness of conventional HMMs is their inflexibility in modeling state durations. This weakness can be avoided by adopting a more complicated class of HMMs known as nonstationary HMMs. In this paper, we analyze nonstationary HMMs whose state transition probabilities are functions of time that indirectly model state durations by a given probability mass function and whose observation spaces are discrete. The objective of our work is to estimate all the unknowns of a nonstationary HMM, which include its parameters and the state sequence. To that end, we construct a Markov chain Monte Carlo (MCMC) sampling scheme, where sampling from all the posterior probability distributions is very easy. The proposed MCMC sampling scheme has been tested in extensive computer simulations on finite discretevalued observed data, and some of the simulation results are presented in the paper. Index TermsGibbs sampling, hidden Markov models, Markov chain Monte Carlo, nonstationary.
Compressive Sensing on Manifolds Using a Nonparametric Mixture of Factor Analyzers: Algorithm and Performance Bounds 1
"... Nonparametric Bayesian methods are employed to constitute a mixture of lowrank Gaussians, for data x ∈ RN that are of high dimension N but are constrained to reside in a lowdimensional subregion of RN. The number of mixture components and their rank are inferred automatically from the data. The re ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
(Show Context)
Nonparametric Bayesian methods are employed to constitute a mixture of lowrank Gaussians, for data x ∈ RN that are of high dimension N but are constrained to reside in a lowdimensional subregion of RN. The number of mixture components and their rank are inferred automatically from the data. The resulting algorithm can be used for learning manifolds and for reconstructing signals from manifolds, based on compressive sensing (CS) projection measurements. The statistical CS inversion is performed analytically. We derive the required number of CS random measurements needed for successful reconstruction, based on easily computed quantities, drawing on block–sparsity properties. The proposed methodology is validated on several synthetic and real datasets. I.