Results 1  10
of
47
Automating the Meta Theory of Deductive Systems
, 2000
"... not be interpreted as representing the o cial policies, either expressed or implied, of NSF or the U.S. Government. This thesis describes the design of a metalogical framework that supports the representation and veri cation of deductive systems, its implementation as an automated theorem prover, a ..."
Abstract

Cited by 81 (17 self)
 Add to MetaCart
not be interpreted as representing the o cial policies, either expressed or implied, of NSF or the U.S. Government. This thesis describes the design of a metalogical framework that supports the representation and veri cation of deductive systems, its implementation as an automated theorem prover, and experimental results related to the areas of programming languages, type theory, and logics. Design: The metalogical framework extends the logical framework LF [HHP93] by a metalogic M + 2. This design is novel and unique since it allows higherorder encodings of deductive systems and induction principles to coexist. On the one hand, higherorder representation techniques lead to concise and direct encodings of programming languages and logic calculi. Inductive de nitions on the other hand allow the formalization of properties about deductive systems, such as the proof that an operational semantics preserves types or the proof that a logic is is a proof calculus whose proof terms are recursive functions that may be consistent.M +
Structural Cut Elimination
 Proceedings of the Tenth Annual Symposium on Logic in Computer Science
, 1995
"... We present new proofs of cut elimination for intuitionistic, classical, and linear sequent calculi. In all cases the proofs proceed by three nested structural inductions, avoiding the explicit use of multisets and termination measures on sequent derivations. This makes them amenable to elegant and ..."
Abstract

Cited by 64 (8 self)
 Add to MetaCart
We present new proofs of cut elimination for intuitionistic, classical, and linear sequent calculi. In all cases the proofs proceed by three nested structural inductions, avoiding the explicit use of multisets and termination measures on sequent derivations. This makes them amenable to elegant and concise implementations in Elf, a constraint logic programming language based on the LF logical framework. 1 Introduction Gentzen's sequent calculi [Gen35] for intuitionistic and classical logic have been the central tool in many prooftheoretical investigations and applications of logic in computer science such as logic programming or automated theorem proving. The central property of sequent calculi is cut elimination (Gentzen's Hauptsatz) which yields consistency of the logic as a corollary. The algorithm for cut elimination may be interpreted computationally, similarly to the way normalization for natural deduction may be viewed as functional computation. For the case of linear logic, ...
Computational types from a logical perspective
 Journal of Functional Programming
, 1998
"... Moggi’s computational lambda calculus is a metalanguage for denotational semantics which arose from the observation that many different notions of computation have the categorical structure of a strong monad on a cartesian closed category. In this paper we show that the computational lambda calculus ..."
Abstract

Cited by 54 (6 self)
 Add to MetaCart
Moggi’s computational lambda calculus is a metalanguage for denotational semantics which arose from the observation that many different notions of computation have the categorical structure of a strong monad on a cartesian closed category. In this paper we show that the computational lambda calculus also arises naturally as the term calculus corresponding (by the CurryHoward correspondence) to a novel intuitionistic modal propositional logic. We give natural deduction, sequent calculus and Hilbertstyle presentations of this logic and prove strong normalisation and confluence results. 1
Ordered Linear Logic and Applications
, 2001
"... This work is dedicated to my parents. Acknowledgments Firstly, and foremost, I would like to thank my principal advisor, Frank Pfenning, for his patience with me, and for teaching me most of what I know about logic and type theory. I would also like to acknowledge some useful discussions with Kevin ..."
Abstract

Cited by 36 (0 self)
 Add to MetaCart
This work is dedicated to my parents. Acknowledgments Firstly, and foremost, I would like to thank my principal advisor, Frank Pfenning, for his patience with me, and for teaching me most of what I know about logic and type theory. I would also like to acknowledge some useful discussions with Kevin Watkins which led me to simplify some of this work. Finally, I would like to thank my other advisor, John Reynolds, for all his kindness and support over the last five years. Abstract This thesis introduces a new logical system, ordered linear logic, which combines reasoning with unrestricted, linear, and ordered hypotheses. The logic conservatively extends (intuitionistic) linear logic, which contains both unrestricted and linear hypotheses, with a notion of ordered hypotheses. Ordered hypotheses must be used exactly once, subject to the order in which they were assumed (i.e., their order cannot be changed during the course of a derivation). This ordering constraint allows for logical representations of simple data structures such as stacks and queues. We construct ordered linear logic in the style of MartinL"of from the basic notion of a hypothetical judgement. We then show normalization for the system by constructing a sequent calculus presentation and proving cutelimination of the sequent system.
Strong Normalisation of CutElimination in Classical Logic
, 2000
"... In this paper we present a strongly normalising cutelimination procedure for classical logic. This procedure adapts Gentzen's standard cutreductions, but is less restrictive than previous strongly normalising cutelimination procedures. In comparison, for example, with works by Dragalin and Danos ..."
Abstract

Cited by 35 (4 self)
 Add to MetaCart
In this paper we present a strongly normalising cutelimination procedure for classical logic. This procedure adapts Gentzen's standard cutreductions, but is less restrictive than previous strongly normalising cutelimination procedures. In comparison, for example, with works by Dragalin and Danos et al., our procedure requires no special annotations on formulae and allows cutrules to pass over other cutrules. In order to adapt the notion of symmetric reducibility candidates for proving the strong normalisation property, we introduce a novel term assignment for sequent proofs of classical logic and formalise cutreductions as term rewriting rules.
A connection based proof method for intuitionistic logic
 TH WORKSHOP ON THEOREM PROVING WITH ANALYTIC TABLEAUX AND RELATED METHODS, LNAI 918
, 1995
"... We present a proof method for intuitionistic logic based on Wallen’s matrix characterization. Our approach combines the connection calculus and the sequent calculus. The search technique is based on notions of paths and connections and thus avoids redundancies in the search space. During the proof s ..."
Abstract

Cited by 29 (19 self)
 Add to MetaCart
We present a proof method for intuitionistic logic based on Wallen’s matrix characterization. Our approach combines the connection calculus and the sequent calculus. The search technique is based on notions of paths and connections and thus avoids redundancies in the search space. During the proof search the computed firstorder and intuitionistic substitutions are used to simultaneously construct a sequent proof which is more human oriented than the matrix proof. This allows to use our method within interactive proof environments. Furthermore we can consider local substitutions instead of global ones and treat substitutions occurring in different branches of the sequent proof independently. This reduces the number of extra copies of formulae to be considered.
Relating Natural Deduction and Sequent Calculus for Intuitionistic NonCommutative Linear Logic
, 1999
"... We present a sequent calculus for intuitionistic noncommutative linear logic (INCLL) , show that it satisfies cut elimination, and investigate its relationship to a natural deduction system for the logic. We show how normal natural deductions correspond to cutfree derivations, and arbitrary natura ..."
Abstract

Cited by 27 (14 self)
 Add to MetaCart
We present a sequent calculus for intuitionistic noncommutative linear logic (INCLL) , show that it satisfies cut elimination, and investigate its relationship to a natural deduction system for the logic. We show how normal natural deductions correspond to cutfree derivations, and arbitrary natural deductions to sequent derivations with cut. This gives us a syntactic proof of normalization for a rich system of noncommutative natural deduction and its associated calculus. INCLL conservatively extends linear logic with means to express sequencing, which has applications in functional programming, logical frameworks, logic programming, and natural language parsing. 1 Introduction Linear logic [11] has been described as a logic of state because it views linear hypotheses as resources which may be consumed in the course of a deduction. It thereby significantly extends the expressive power of both classical and intuitionistic logics, yet it does not offer means to express sequencing. Th...
On transforming intuitionistic matrix proofs into standardsequent proofs
 TABLEAUX–95, LNAI 918
, 1995
"... We present a procedure transforming intuitionistic matrix proofs into proofs within the intuitionistic standard sequent calculus. The transformation is based on L. Wallen’s proof justifying his matrix characterization for the validity of intuitionistic formulae. Since this proof makes use of Fitting ..."
Abstract

Cited by 26 (15 self)
 Add to MetaCart
We present a procedure transforming intuitionistic matrix proofs into proofs within the intuitionistic standard sequent calculus. The transformation is based on L. Wallen’s proof justifying his matrix characterization for the validity of intuitionistic formulae. Since this proof makes use of Fitting‘s nonstandard sequent calculus our procedure consists of two steps. First a nonstandard sequent proof will be extracted from a given matrix proof. Secondly we transform each nonstandard proof into a standard proof in a structure preserving way. To simplify the latter step we introduce an extended standard calculus which is shown to be sound and complete.
Intuitionistic Necessity Revisited
 PROCEEDINGS OF THE LOGIC AT WORK CONFERENCE
, 1996
"... In this paper we consider an intuitionistic modal logic, which we call IS42 . Our approach is different to others in that we favour the natural deduction and sequent calculus proof systems rather than the axiomatic, or Hilbertstyle, system. Our natural deduction formulation is simpler than other pr ..."
Abstract

Cited by 23 (7 self)
 Add to MetaCart
In this paper we consider an intuitionistic modal logic, which we call IS42 . Our approach is different to others in that we favour the natural deduction and sequent calculus proof systems rather than the axiomatic, or Hilbertstyle, system. Our natural deduction formulation is simpler than other proposals. The traditional means of devising a modal logic is with reference to a model, and almost always, in terms of a Kripke model. Again our approach is different in that we favour categorical models. This facilitates not only a more abstract definition of a whole class of models but also a means of modelling proofs as well as provability.
On an Intuitionistic Modal Logic
 Studia Logica
, 2001
"... . In this paper we consider an intuitionistic variant of the modal logic S4 (which we call IS4). The novelty of this paper is that we place particular importance on the natural deduction formulation of IS4our formulation has several important metatheoretic properties. In addition, we study models ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
. In this paper we consider an intuitionistic variant of the modal logic S4 (which we call IS4). The novelty of this paper is that we place particular importance on the natural deduction formulation of IS4our formulation has several important metatheoretic properties. In addition, we study models of IS4, not in the framework of Kripke semantics, but in the more general framework of category theory. This allows not only a more abstract definition of a whole class of models but also a means of modelling proofs as well as provability. 1. Introduction Modal logics are traditionally extensions of classical logic with new operators, or modalities, whose operation is intensional. Modal logics are most commonly justified by the provision of an intuitive semantics based upon `possible worlds', an idea originally due to Kripke. Kripke also provided a possible worlds semantics for intuitionistic logic, and so it is natural to consider intuitionistic logic extended with intensional modalities...