Results 11  20
of
57
Algorithms for computing isogenies between elliptic curves
 Math. Comp
, 2000
"... Abstract. The heart of the improvements by Elkies to Schoof’s algorithm for computing the cardinality of elliptic curves over a finite field is the ability to compute isogenies between curves. Elkies ’ approach is well suited for the case where the characteristic of the field is large. Couveignes sh ..."
Abstract

Cited by 31 (6 self)
 Add to MetaCart
Abstract. The heart of the improvements by Elkies to Schoof’s algorithm for computing the cardinality of elliptic curves over a finite field is the ability to compute isogenies between curves. Elkies ’ approach is well suited for the case where the characteristic of the field is large. Couveignes showed how to compute isogenies in small characteristic. The aim of this paper is to describe the first successful implementation of Couveignes’s algorithm. In particular, we describe the use of fast algorithms for performing incremental operations on series. We also insist on the particular case of the characteristic 2. 1.
The DiffieHellman Protocol
 DESIGNS, CODES, AND CRYPTOGRAPHY
, 1999
"... The 1976 seminal paper of Diffie and Hellman is a landmark in the history of cryptography. They introduced the fundamental concepts of a trapdoor oneway function, a publickey cryptosystem, and a digital signature scheme. Moreover, they presented a protocol, the socalled DiffieHellman protoco ..."
Abstract

Cited by 26 (0 self)
 Add to MetaCart
The 1976 seminal paper of Diffie and Hellman is a landmark in the history of cryptography. They introduced the fundamental concepts of a trapdoor oneway function, a publickey cryptosystem, and a digital signature scheme. Moreover, they presented a protocol, the socalled DiffieHellman protocol, allowing two parties who share no secret information initially, to generate a mutual secret key. This paper summarizes the present knowledge on the security of this protocol.
PRIMES is in P
 Ann. of Math
, 2002
"... We present an unconditional deterministic polynomialtime algorithm that determines whether an input number is prime or composite. 1 ..."
Abstract

Cited by 26 (2 self)
 Add to MetaCart
We present an unconditional deterministic polynomialtime algorithm that determines whether an input number is prime or composite. 1
On Parallel Hashing and Integer Sorting
, 1991
"... The problem of sorting n integers from a restricted range [1::m], where m is superpolynomial in n, is considered. An o(n log n) randomized algorithm is given. Our algorithm takes O(n log log m) expected time and O(n) space. (Thus, for m = n polylog(n) we have an O(n log log n) algorithm.) The al ..."
Abstract

Cited by 25 (9 self)
 Add to MetaCart
The problem of sorting n integers from a restricted range [1::m], where m is superpolynomial in n, is considered. An o(n log n) randomized algorithm is given. Our algorithm takes O(n log log m) expected time and O(n) space. (Thus, for m = n polylog(n) we have an O(n log log n) algorithm.) The algorithm is parallelizable. The resulting parallel algorithm achieves optimal speed up. Some features of the algorithm make us believe that it is relevant for practical applications. A result of independent interest is a parallel hashing technique. The expected construction time is logarithmic using an optimal number of processors, and searching for a value takes O(1) time in the worst case. This technique enables drastic reduction of space requirements for the price of using randomness. Applicability of the technique is demonstrated for the parallel sorting algorithm, and for some parallel string matching algorithms. The parallel sorting algorithm is designed for a strong and non standard mo...
The Generation of Random Numbers That Are Probably Prime
 Journal of Cryptology
, 1988
"... In this paper we make two observations on Rabin's probabilistic primality test. The first is a provocative reason why Rabin's test is so good. It turned out that a single iteration has a nonnegligible probability of failing _only_ on composite numbers that can actually be split in expected polynomia ..."
Abstract

Cited by 22 (0 self)
 Add to MetaCart
In this paper we make two observations on Rabin's probabilistic primality test. The first is a provocative reason why Rabin's test is so good. It turned out that a single iteration has a nonnegligible probability of failing _only_ on composite numbers that can actually be split in expected polynomial time. Therefore, factoring would be easy if Rabin's test systematically failed with a 25% probability on each composite integer (which, of course, it does not). The second observation is more fundamental because is it _not_ restricted to primality testing: it has consequences for the entire field of probabilistic algorithms. The failure probability when using a probabilistic algorithm for the purpose of testing some property is compared with that when using it for the purpose of obtaining a random element hopefully having this property. More specifically, we investigate the question of how reliable Rabin's test is when used to _generate_ a random integer that is probably prime, rather than to _test_ a specific integer for primality.
Key words: factorization, false witnesses, primality testing, probabilistic algorithms, Rabin's test.
Primality testing using elliptic curves
 Journal of the ACM
, 1999
"... Abstract. We present a primality proving algorithm—a probabilistic primality test that produces short certificates of primality on prime inputs. We prove that the test runs in expected polynomial time for all but a vanishingly small fraction of the primes. As a corollary, we obtain an algorithm for ..."
Abstract

Cited by 22 (0 self)
 Add to MetaCart
Abstract. We present a primality proving algorithm—a probabilistic primality test that produces short certificates of primality on prime inputs. We prove that the test runs in expected polynomial time for all but a vanishingly small fraction of the primes. As a corollary, we obtain an algorithm for generating large certified primes with distribution statistically close to uniform. Under the conjecture that the gap between consecutive primes is bounded by some polynomial in their size, the test is shown to run in expected polynomial time for all primes, yielding a Las Vegas primality test. Our test is based on a new methodology for applying group theory to the problem of prime certification, and the application of this methodology using groups generated by elliptic curves over finite fields. We note that our methodology and methods have been subsequently used and improved upon, most notably in the primality proving algorithm of Adleman and Huang using hyperelliptic curves and
Fast Generation of Prime Numbers and Secure PublicKey Cryptographic Parameters
, 1995
"... A very efficient recursive algorithm for generating nearly random provable primes is presented. The expected time for generating a prime is only slightly greater than the expected time required for generating a pseudoprime of the same size that passes the MillerRabin test for only one base. The ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
A very efficient recursive algorithm for generating nearly random provable primes is presented. The expected time for generating a prime is only slightly greater than the expected time required for generating a pseudoprime of the same size that passes the MillerRabin test for only one base. Therefore our algorithm is even faster than presentlyused algorithms for generating only pseudoprimes because several MillerRabin tests with independent bases must be applied for achieving a sufficient confidence level. Heuristic arguments suggest that the generated primes are close to uniformly distributed over the set of primes in the specified interval. Security constraints on the prime parameters of certain cryptographic systems are discussed, and in particular a detailed analysis of the iterated encryption attack on the RSA publickey cryptosystem is presented. The prime generation algorithm can easily be modified to generate nearly random primes or RSAmoduli that satisfy t...
Proving primality in essentially quartic random time
 Math. Comp
, 2003
"... Abstract. This paper presents an algorithm that, given a prime n, finds and verifies a proof of the primality of n in random time (lg n) 4+o(1). Several practical speedups are incorporated into the algorithm and discussed in detail. 1. ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
Abstract. This paper presents an algorithm that, given a prime n, finds and verifies a proof of the primality of n in random time (lg n) 4+o(1). Several practical speedups are incorporated into the algorithm and discussed in detail. 1.
Building Cyclic Elliptic Curves Modulo Large Primes
 Advances in Cryptology  EUROCRYPT '91, Lecture Notes in Computer Science
, 1987
"... Elliptic curves play an important role in many areas of modern cryptology such as integer factorization and primality proving. Moreover, they can be used in cryptosystems based on discrete logarithms for building oneway permutations. For the latter purpose, it is required to have cyclic elliptic cu ..."
Abstract

Cited by 18 (2 self)
 Add to MetaCart
Elliptic curves play an important role in many areas of modern cryptology such as integer factorization and primality proving. Moreover, they can be used in cryptosystems based on discrete logarithms for building oneway permutations. For the latter purpose, it is required to have cyclic elliptic curves over finite fields. The aim of this note is to explain how to construct such curves over a finite field of large prime cardinality, using the ECPP primality proving test of Atkin and Morain. 1 Introduction Elliptic curves prove to be a powerful tool in modern cryptology. Following the original work of H. W. Lenstra, Jr. [18] concerning integer factorization, many researchers have used this new idea to work out primality proving algorithms [8, 14, 2, 4, 22] as well as cryptosystems [21, 16] generalizing those of [12, 1, 9]. Recent work on these topics can be found in [20, 19]. More recently, Kaliski [15] has used elliptic curves in the design of oneway permutations. For this, the autho...
Constructing Elliptic Curve Cryptosystems in Characteristic 2
, 1998
"... Since the group of an elliptic curve defined over a finite field F_q... The purpose of this paper is to describe how one can search for suitable elliptic curves with random coefficients using Schoof's algorithm. We treat the important special case of characteristic 2, where one has certain simplific ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
Since the group of an elliptic curve defined over a finite field F_q... The purpose of this paper is to describe how one can search for suitable elliptic curves with random coefficients using Schoof's algorithm. We treat the important special case of characteristic 2, where one has certain simplifications in some of the algorithms.