Results 1  10
of
49
Random Oracles are Practical: A Paradigm for Designing Efficient Protocols
, 1995
"... We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the ..."
Abstract

Cited by 1333 (62 self)
 Add to MetaCart
We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the random oracle model, and then replacing oracle accesses by the computation of an "appropriately chosen" function h. This paradigm yields protocols much more efficient than standard ones while retaining many of the advantages of provable security. We illustrate these gains for problems including encryption, signatures, and zeroknowledge proofs.
Entity Authentication and Key Distribution
, 1993
"... Entity authentication and key distribution are central cryptographic problems in distributed computing  but up until now, they have lacked even a meaningful definition. One consequence is that incorrect and inefficient protocols have proliferated. This paper provides the first treatment of these p ..."
Abstract

Cited by 463 (13 self)
 Add to MetaCart
Entity authentication and key distribution are central cryptographic problems in distributed computing  but up until now, they have lacked even a meaningful definition. One consequence is that incorrect and inefficient protocols have proliferated. This paper provides the first treatment of these problems in the complexitytheoretic framework of modern cryptography. Addressed in detail are two problems of the symmetric, twoparty setting: mutual authentication and authenticated key exchange. For each we present a definition, protocol, and proof that the protocol meets its goal, assuming the (minimal) assumption of pseudorandom function. When this assumption is appropriately instantiated, the protocols given are practical and efficient.
Security and Composition of Multiparty Cryptographic Protocols
 JOURNAL OF CRYPTOLOGY
, 1998
"... We present general definitions of security for multiparty cryptographic protocols, with focus on the task of evaluating a probabilistic function of the parties' inputs. We show that, with respect to these definitions, security is preserved under a natural composition operation. The definitions f ..."
Abstract

Cited by 389 (18 self)
 Add to MetaCart
We present general definitions of security for multiparty cryptographic protocols, with focus on the task of evaluating a probabilistic function of the parties' inputs. We show that, with respect to these definitions, security is preserved under a natural composition operation. The definitions follow the general paradigm of known definitions; yet some substantial modifications and simplifications are introduced. The composition operation is the natural `subroutine substitution' operation, formalized by Micali and Rogaway. We consider several standard settings for multiparty protocols, including the cases of eavesdropping, Byzantine, nonadaptive and adaptive adversaries, as well as the informationtheoretic and the computational models. In particular, in the computational model we provide the first definition of security of protocols that is shown to be preserved under composition.
Reconciling Two Views of Cryptography (The Computational Soundness of Formal Encryption)
, 2000
"... Two distinct, rigorous views of cryptography have developed over the years, in two mostly separate communities. One of the views relies on a simple but effective formal approach; the other, on a detailed computational model that considers issues of complexity and probability. ..."
Abstract

Cited by 333 (18 self)
 Add to MetaCart
Two distinct, rigorous views of cryptography have developed over the years, in two mostly separate communities. One of the views relies on a simple but effective formal approach; the other, on a detailed computational model that considers issues of complexity and probability.
Authenticated encryption: Relations among notions and analysis of the generic composition paradigm
, 2000
"... and analysis of the generic composition paradigm ..."
Abstract

Cited by 222 (22 self)
 Add to MetaCart
and analysis of the generic composition paradigm
ChosenCiphertext Security from IdentityBased Encryption. Adv
 in Cryptology — Eurocrypt 2004, LNCS
, 2004
"... We propose simple and efficient CCAsecure publickey encryption schemes (i.e., schemes secure against adaptive chosenciphertext attacks) based on any identitybased encryption (IBE) scheme. Our constructions have ramifications of both theoretical and practical interest. First, our schemes give a n ..."
Abstract

Cited by 199 (11 self)
 Add to MetaCart
We propose simple and efficient CCAsecure publickey encryption schemes (i.e., schemes secure against adaptive chosenciphertext attacks) based on any identitybased encryption (IBE) scheme. Our constructions have ramifications of both theoretical and practical interest. First, our schemes give a new paradigm for achieving CCAsecurity; this paradigm avoids “proofs of wellformedness ” that have been shown to underlie previous constructions. Second, instantiating our construction using known IBE constructions we obtain CCAsecure encryption schemes whose performance is competitive with the most efficient CCAsecure schemes to date. Our techniques extend naturally to give an efficient method for securing also IBE schemes (even hierarchical ones) against adaptive chosenciphertext attacks. Coupled with previous work, this gives the first efficient constructions of CCAsecure IBE schemes. 1
On the Composition of ZeroKnowledge Proof Systems
 SIAM Journal on Computing
, 1990
"... : The wide applicability of zeroknowledge interactive proofs comes from the possibility of using these proofs as subroutines in cryptographic protocols. A basic question concerning this use is whether the (sequential and/or parallel) composition of zeroknowledge protocols is zeroknowledge too. We ..."
Abstract

Cited by 190 (14 self)
 Add to MetaCart
: The wide applicability of zeroknowledge interactive proofs comes from the possibility of using these proofs as subroutines in cryptographic protocols. A basic question concerning this use is whether the (sequential and/or parallel) composition of zeroknowledge protocols is zeroknowledge too. We demonstrate the limitations of the composition of zeroknowledge protocols by proving that the original definition of zeroknowledge is not closed under sequential composition; and that even the strong formulations of zeroknowledge (e.g. blackbox simulation) are not closed under parallel execution. We present lower bounds on the round complexity of zeroknowledge proofs, with significant implications to the parallelization of zeroknowledge protocols. We prove that 3round interactive proofs and constantround ArthurMerlin proofs that are blackbox simulation zeroknowledge exist only for languages in BPP. In particular, it follows that the "parallel versions" of the first interactive proo...
How to Construct ConstantRound ZeroKnowledge Proof Systems for NP
 Journal of Cryptology
, 1995
"... Constantround zeroknowledge proof systems for every language in NP are presented, assuming the existence of a collection of clawfree functions. In particular, it follows that such proof systems exist assuming the intractability of either the Discrete Logarithm Problem or the Factoring Problem for ..."
Abstract

Cited by 157 (8 self)
 Add to MetaCart
Constantround zeroknowledge proof systems for every language in NP are presented, assuming the existence of a collection of clawfree functions. In particular, it follows that such proof systems exist assuming the intractability of either the Discrete Logarithm Problem or the Factoring Problem for Blum Integers.
Foundations of Group Signatures: Formal Definitions, Simplified Requirements, and a Construction Based on General Assumptions
, 2003
"... This paper provides theoretical foundations for the group signature primitive. We introduce strong, formal definitions for the core requirements of anonymity and traceability. We then show that these imply the large set of sometimes ambiguous existing informal requirements in the literature, thereb ..."
Abstract

Cited by 129 (6 self)
 Add to MetaCart
This paper provides theoretical foundations for the group signature primitive. We introduce strong, formal definitions for the core requirements of anonymity and traceability. We then show that these imply the large set of sometimes ambiguous existing informal requirements in the literature, thereby unifying and simplifying the requirements for this primitive. Finally we prove the existence of a construct meeting our definitions based only on the assumption that trapdoor permutations exist.