Results 1  10
of
22
Healthy, Wealthy, and Wise? Tests for Direct Causal Paths
 Journal of Econometrics
, 2001
"... This paper utilizes the Asset and Health Dynamics of the Oldest Old (AHEAD) Panel to test for the absence of causal links from socioeconomic status (SES) to health innovations and mortality, and from health conditions to innovations in wealth. We conclude that there is no direct causal link from ..."
Abstract

Cited by 102 (4 self)
 Add to MetaCart
This paper utilizes the Asset and Health Dynamics of the Oldest Old (AHEAD) Panel to test for the absence of causal links from socioeconomic status (SES) to health innovations and mortality, and from health conditions to innovations in wealth. We conclude that there is no direct causal link from SES to mortality or to incidence of most sudden onset health conditions (accidents and some acute conditions), but there is an association of SES with incidence of gradual onset health conditions (mental conditions, and some degenerative and chronic conditions), due either to causal links or to persistent unobserved behavioral or genetic factors that have a common influence on both SES and innovations in health. We conclude that there is no direct causal link from health status to innovations in wealth.
Estimating highdimensional intervention effects from observation data
 THE ANN OF STAT
, 2009
"... We assume that we have observational data generated from an unknown underlying directed acyclic graph (DAG) model. A DAG is typically not identifiable from observational data, but it is possible to consistently estimate the equivalence class of a DAG. Moreover, for any given DAG, causal effects can ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
(Show Context)
We assume that we have observational data generated from an unknown underlying directed acyclic graph (DAG) model. A DAG is typically not identifiable from observational data, but it is possible to consistently estimate the equivalence class of a DAG. Moreover, for any given DAG, causal effects can be estimated using intervention calculus. In this paper, we combine these two parts. For each DAG in the estimated equivalence class, we use intervention calculus to estimate the causal effects of the covariates on the response. This yields a collection of estimated causal effects for each covariate. We show that the distinct values in this set can be consistently estimated by an algorithm that uses only local information of the graph. This local approach is computationally fast and feasible in highdimensional problems. We propose to use summary measures of the set of possible causal effects to determine variable importance. In particular, we use the minimum absolute value of this set, since that is a lower bound on the size of the causal effect. We demonstrate the merits of our methods in a simulation study and on a data set about riboflavin production.
Statistics and Causal Inference: A Review
, 2003
"... This paper aims at assisting empirical researchers benefit from recent advances in causal inference. The paper stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assump ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
This paper aims at assisting empirical researchers benefit from recent advances in causal inference. The paper stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, and the conditional nature of causal claims inferred from nonexperimental studies. These emphases are illustrated through a brief survey of recent results, including the control of confounding, the assessment of causal effects, the interpretation of counterfactuals, and a symbiosis between counterfactual and graphical methods of analysis.
Causal Inference and the Heckman Model
 Journal of Educational and Behavioral Statistics(29
, 2004
"... ..."
2010a Statistical inference after model selection
 Journal of Quantitative Criminology
"... Conventional statistical inference requires that a model of how the data were generated be known before the data are analyzed. Yet in criminology, and in the social sciences more broadly, a variety of model selection procedures are routinely undertaken followed by statistical tests and confidence in ..."
Abstract

Cited by 9 (6 self)
 Add to MetaCart
Conventional statistical inference requires that a model of how the data were generated be known before the data are analyzed. Yet in criminology, and in the social sciences more broadly, a variety of model selection procedures are routinely undertaken followed by statistical tests and confidence intervals computed for a “final ” model. In this paper, we examine such practices and show how they are typically misguided. The parameters being estimated are no longer well defined, and postmodelselection sampling distributions are mixtures
Chapter 9 Propensity Score Matching to Extract Latent Experiments from Nonexperimental Data: A Case Study
"... During the 1995–1996 academic year, investigators from the College Board surveyed a random sample of high school junior and senior SAT ® takers to probe how they had prepared for the SAT. Among other questions, students were asked ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
During the 1995–1996 academic year, investigators from the College Board surveyed a random sample of high school junior and senior SAT ® takers to probe how they had prepared for the SAT. Among other questions, students were asked
2003): “Dynamic Econometric Program Evaluation
 IZA Discussion Paper
"... no institutional policy positions. The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent, nonprofit limited liability company (Gesellschaft mit beschränkter Ha ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
no institutional policy positions. The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent, nonprofit limited liability company (Gesellschaft mit beschränkter Haftung) supported by Deutsche Post World Net. The center is associated with the University of Bonn and offers a stimulating research environment through its research networks, research support, and visitors and doctoral programs. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public. The current research program deals with (1) mobility and flexibility of labor, (2) internationalization of labor markets, (3) welfare state and labor market, (4) labor markets in transition countries, (5) the future of labor, (6) evaluation of labor market policies and projects and (7) general labor economics. IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion.
Statistical Models for Causation
, 2005
"... We review the basis for inferring causation by statistical modeling. Parameters should be stable under interventions, and so should error distributions. There are also statistical conditions on the errors. Stability is difficult to establish a priori, and the statistical conditions are equally probl ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We review the basis for inferring causation by statistical modeling. Parameters should be stable under interventions, and so should error distributions. There are also statistical conditions on the errors. Stability is difficult to establish a priori, and the statistical conditions are equally problematic. Therefore, causal relationships are seldom to be inferred from a data set by running statistical algorithms, unless there is substantial prior knowledge about the mechanisms that generated the data. We begin with linear models (regression analysis) and then turn to graphical models, which may in principle be nonlinear.