Results 1  10
of
16
Expressive Logics for Coalgebras via Terminal Sequence Induction
 Notre Dame J. Formal Logic
, 2002
"... This paper introduces the proof principle of terminal sequence induction and shows, how terminal sequence induction can be used to obtain expressiveness results for logics, interpreted over coalgebras. ..."
Abstract

Cited by 26 (8 self)
 Add to MetaCart
This paper introduces the proof principle of terminal sequence induction and shows, how terminal sequence induction can be used to obtain expressiveness results for logics, interpreted over coalgebras.
PSPACE bounds for rank 1 modal logics
 IN LICS’06
, 2006
"... For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a sh ..."
Abstract

Cited by 26 (15 self)
 Add to MetaCart
For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACEbounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant prooftheoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.
Proof Methods for Corecursive Programs
 Fundamenta Informaticae Special Issue on Program Transformation
, 1999
"... This article is a tutorial on four methods for proving properties of corecursive programs: fixpoint induction, the approximation lemma, coinduction, and fusion. ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
This article is a tutorial on four methods for proving properties of corecursive programs: fixpoint induction, the approximation lemma, coinduction, and fusion.
GSOS for Probabilistic Transition Systems
, 2002
"... We introduce PGSOS, an operator specification format for (reactive) probabilistic transition systems which bears similarity to the known GSOS format for labelled (nondeterministic) transition systems. Like the standard one, the format is well behaved in the sense that on all models bisimilarity is a ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
We introduce PGSOS, an operator specification format for (reactive) probabilistic transition systems which bears similarity to the known GSOS format for labelled (nondeterministic) transition systems. Like the standard one, the format is well behaved in the sense that on all models bisimilarity is a congruence and the uptocontext proof principle is valid. Moreover, guarded recursive equations involving the specified operators have unique solutions up to bisimilarity. These results generalize wellbehavedness results given in the literature for specific operators that turn out to be definable by our format. PGSOS arose from the following procedure: Turi and Plotkin proposed to model specifications in the (standard) GSOS format as natural transformations of a type they call abstract GSOS. This formulation allows for simple proofs of several wellbehavedness properties, such as bisimilarity being a congruence on all models of such a specification. First, we give a full proof of Turi and Plotkin's claim about the correspondence of abstract GSOS and standard GSOS for labelled transition systems. Next, we instantiate their categorical framework to yield a specification format for probabilistic transition systems. The main contribution of the present paper is the derivation of the PGSOS format as a rulestyle representation of the natural transformations obtained this way. We benefit from the fact that some parts of our argument for the nondeterministic case can be reused. The wellbehavedness results for abstract GSOS immediately carry over to the new concrete format.
The Dual of Substitution is Redecoration
, 2002
"... It is well known that type constructors of incomplete trees (trees with variables) carry the structure of a monad with substitution as the extension operation. Less known are the facts that the same is true of type constructors of incomplete cotrees (=nonwellfounded trees) and that the correspondin ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
It is well known that type constructors of incomplete trees (trees with variables) carry the structure of a monad with substitution as the extension operation. Less known are the facts that the same is true of type constructors of incomplete cotrees (=nonwellfounded trees) and that the corresponding monads exhibit a special structure. We wish to draw attention to the dual facts which are as meaningful for functional programming: type constructors of decorated cotrees carry the structure of a comonad with redecoration as the coextension operation, and so doeven more interestinglytype constructors of decorated trees.
Beating the Productivity Checker Using Embedded Languages
"... Abstract. Some total languages, like Agda and Coq, allow the use of guarded corecursion to construct infinite values and proofs. Guarded corecursion is a form of recursion in which arbitrary recursive calls are allowed, as long as they are guarded by a coinductive constructor. Guardedness ensures th ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
Abstract. Some total languages, like Agda and Coq, allow the use of guarded corecursion to construct infinite values and proofs. Guarded corecursion is a form of recursion in which arbitrary recursive calls are allowed, as long as they are guarded by a coinductive constructor. Guardedness ensures that programs are productive, i.e. that every finite prefix of an infinite value can be computed in finite time. However, many productive programs are not guarded, and it can be nontrivial to put them in guarded form. This paper gives a method for turning a productive program into a guarded program. The method amounts to defining a problemspecific language as a data type, writing the program in the problemspecific language, and writing a guarded interpreter for this language. 1
A coalgebraic approach to the semantics of the ambient calculus
 ALGEBRA AND COALGEBRA IN COMPUTER SCIENCE
, 2005
"... Recently, various process calculi have been introduced which are suited for the modelling of mobile computation and in particular the mobility of program code; a prominent example is the ambient calculus. Due to the complexity of the involved spatial reduction, there is — in contrast to the situatio ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
Recently, various process calculi have been introduced which are suited for the modelling of mobile computation and in particular the mobility of program code; a prominent example is the ambient calculus. Due to the complexity of the involved spatial reduction, there is — in contrast to the situation in standard process algebra — up to now no satisfying coalgebraic representation of a mobile process calculus. Here, we discuss a coalgebraic denotational semantics for the ambient calculus, viewed as a step towards a generic coalgebraic framework for modelling mobile systems. Crucial features of our modelling are a set of GSOS style transition rules for the ambient calculus, a hardwiring of the socalled hardening relation in the functorial signature, and a setbased treatment of hidden name sharing. The formal representation of this framework is cast in the algebraiccoalgebraic specification language CoCasl.
Coinductive Field of Exact Real Numbers and General Corecursion
, 2006
"... In this article we present a method to define algebraic structure (field operations) on a representation of real numbers by coinductive streams. The field operations will be given in two algorithms (homographic and quadratic algorithm) that operate on streams of Möbius maps. The algorithms can be se ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
In this article we present a method to define algebraic structure (field operations) on a representation of real numbers by coinductive streams. The field operations will be given in two algorithms (homographic and quadratic algorithm) that operate on streams of Möbius maps. The algorithms can be seen as coalgebra maps on the coalgebra of streams and hence they will be formalised as general corecursive functions. We use the machinery of Coq proof assistant for coinductive types to present the formalisation.
Incremental patternbased coinduction for process algebra and its Isabelle formalization
"... Abstract. We present a coinductive proof system for bisimilarity in transition systems specifiable in the de Simone SOS format. Our coinduction is incremental, in that it allows building incrementally an a priori unknown bisimulation, and patternbased, in that it works on equalities of process patt ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. We present a coinductive proof system for bisimilarity in transition systems specifiable in the de Simone SOS format. Our coinduction is incremental, in that it allows building incrementally an a priori unknown bisimulation, and patternbased, in that it works on equalities of process patterns (i.e., universally quantified equations of process terms containing process variables), thus taking advantage of equational reasoning in a “circular ” manner, inside coinductive proof loops. The proof system has been formalized and proved sound in Isabelle/HOL. 1
PSPACE bounds for rank 1 modal logics
 In LICS’06
, 2006
"... For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a sh ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACEbounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant prooftheoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.