Results 1  10
of
56
PSPACE bounds for rank 1 modal logics
 IN LICS’06
, 2006
"... For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a sh ..."
Abstract

Cited by 37 (19 self)
 Add to MetaCart
(Show Context)
For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACEbounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant prooftheoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.
A Finite Model Construction For Coalgebraic Modal Logic
"... In recent years, a tight connection has emerged between modal logic on the one hand and coalgebras, understood as generic transition systems, on the other hand. Here, we prove that (finitary) coalgebraic modal logic has the finite model property. This fact not only reproves known completeness result ..."
Abstract

Cited by 36 (17 self)
 Add to MetaCart
(Show Context)
In recent years, a tight connection has emerged between modal logic on the one hand and coalgebras, understood as generic transition systems, on the other hand. Here, we prove that (finitary) coalgebraic modal logic has the finite model property. This fact not only reproves known completeness results for coalgebraic modal logic, which we push further by establishing that every coalgebraic modal logic admits a complete axiomatization of rank 1; it also enables us to establish a generic decidability result and a first complexity bound. Examples covered by these general results include, besides standard HennessyMilner logic, graded modal logic and probabilistic modal logic.
Generalizing the powerset construction, coalgebraically
, 2010
"... Coalgebra is an abstract framework for the uniform study of different kinds of dynamical systems. An endofunctor F determines both the type of systems (Fcoalgebras) and a notion of behavioral equivalence (∼F) amongst them. Many types of transition systems and their equivalences can be captured by a ..."
Abstract

Cited by 23 (9 self)
 Add to MetaCart
Coalgebra is an abstract framework for the uniform study of different kinds of dynamical systems. An endofunctor F determines both the type of systems (Fcoalgebras) and a notion of behavioral equivalence (∼F) amongst them. Many types of transition systems and their equivalences can be captured by a functor F. For example, for deterministic automata the derived equivalence is language equivalence, while for nondeterministic automata it is ordinary bisimilarity. The powerset construction is a standard method for converting a nondeterministic automaton into an equivalent deterministic one as far as language is concerned. In this paper, we lift the powerset construction on automata to the more general framework of coalgebras with structured state spaces. Examples of applications include partial Mealy machines, (structured) Moore automata, and Rabin probabilistic automata.
Modular algorithms for heterogeneous modal logics
 IN AUTOMATA, LANGUAGES AND PROGRAMMING, ICALP 07, VOL. 4596 OF LNCS
, 2007
"... Statebased systems and modal logics for reasoning about them often heterogeneously combine a number of features such as nondeterminism and probabilities. Here, we show that the combination of features can be reflected algorithmically and develop modular decision procedures for heterogeneous modal ..."
Abstract

Cited by 22 (15 self)
 Add to MetaCart
(Show Context)
Statebased systems and modal logics for reasoning about them often heterogeneously combine a number of features such as nondeterminism and probabilities. Here, we show that the combination of features can be reflected algorithmically and develop modular decision procedures for heterogeneous modal logics. The modularity is achieved by formalising the underlying statebased systems as multisorted coalgebras and associating both a logical and an algorithmic description to a number of basic building blocks. Our main result is that logics arising as combinations of these building blocks can be decided in polynomial space provided that this is the case for the components. By instantiating the general framework to concrete cases, we obtain PSPACE decision procedures for a wide variety of structurally different logics, describing e.g. Segala systems and games with uncertain information.
Rank1 modal logics are coalgebraic
 IN STACS 2007, 24TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, PROCEEDINGS
, 2007
"... Coalgebras provide a unifying semantic framework for a wide variety of modal logics. It has previously been shown that the class of coalgebras for an endofunctor can always be axiomatised in rank 1. Here we establish the converse, i.e. every rank 1 modal logic has a sound and strongly complete coal ..."
Abstract

Cited by 21 (14 self)
 Add to MetaCart
(Show Context)
Coalgebras provide a unifying semantic framework for a wide variety of modal logics. It has previously been shown that the class of coalgebras for an endofunctor can always be axiomatised in rank 1. Here we establish the converse, i.e. every rank 1 modal logic has a sound and strongly complete coalgebraic semantics. As a consequence, recent results on coalgebraic modal logic, in particular generic decision procedures and upper complexity bounds, become applicable to arbitrary rank 1 modal logics, without regard to their semantic status; we thus obtain purely syntactic versions of these results. As an extended example, we apply our framework to recently defined deontic logics.
Bialgebraic Methods and Modal Logic in Structural Operational Semantics
 Electronic Notes in Theoretical Computer Science
, 2007
"... Bialgebraic semantics, invented a decade ago by Turi and Plotkin, is an approach to formal reasoning about wellbehaved structural operational semantics (SOS). An extension of algebraic and coalgebraic methods, it abstracts from concrete notions of syntax and system behaviour, thus treating various ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
(Show Context)
Bialgebraic semantics, invented a decade ago by Turi and Plotkin, is an approach to formal reasoning about wellbehaved structural operational semantics (SOS). An extension of algebraic and coalgebraic methods, it abstracts from concrete notions of syntax and system behaviour, thus treating various kinds of operational descriptions in a uniform fashion. In this paper, bialgebraic semantics is combined with a coalgebraic approach to modal logic in a novel, general approach to proving the compositionality of process equivalences for languages defined by structural operational semantics. To prove compositionality, one provides a notion of behaviour for logical formulas, and defines an SOSlike specification of modal operators which reflects the original SOS specification of the language. This approach can be used to define SOS congruence formats as well as to prove compositionality for specific languages and equivalences. Key words: structural operational semantics, coalgebra, bialgebra, modal logic, congruence format 1
Coalgebraic modal logic beyond Sets
 In MFPS XXIII
, 2007
"... Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
(Show Context)
Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be
Strongly complete logics for coalgebras
, 2006
"... Coalgebras for a functor T on a category X model many different types of transition systems in a uniform way. This paper focuses on a uniform account of finitary strongly complete specification languages for Setbased coalgebras. We show how to associate a finitary logic to any finitesets preservin ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
(Show Context)
Coalgebras for a functor T on a category X model many different types of transition systems in a uniform way. This paper focuses on a uniform account of finitary strongly complete specification languages for Setbased coalgebras. We show how to associate a finitary logic to any finitesets preserving functor T and prove the logic to be strongly complete under a mild condition on T. The proof is based on the following result. An endofunctor on a variety has a presentation by operations and equations iff it preserves sifted colimits. 1
The least fibred lifting and the expressivity of coalgebraic modal logic
 In Proc. CALCO 2005, volume 3629 of LNCS
, 2005
"... and relationpreserving functions. In this paper, the least (fibrewise) of such liftings, L(B), is characterized for essentially any B. The lifting has all the useful properties of the relation lifting due to Jacobs, without the usual assumption of weak pullback preservation; if B preserves weak pu ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
(Show Context)
and relationpreserving functions. In this paper, the least (fibrewise) of such liftings, L(B), is characterized for essentially any B. The lifting has all the useful properties of the relation lifting due to Jacobs, without the usual assumption of weak pullback preservation; if B preserves weak pullbacks, the two liftings coincide. Equivalence relations can be viewed as Boolean algebras of subsets (predicates, tests). This correspondence relates L(B) to the least test suite lifting T (B), which is defined in the spirit of predicate lifting as used in coalgebraic modal logic. Properties of T (B) translate to a general expressivity result for a modal logic for Bcoalgebras. In the resulting logic, modal operators of any arity can appear. 1
Completeness of the finitary Moss logic
 In Areces and Goldblatt [3
"... abstract. We give a sound and complete derivation system for the valid formulas in the finitary version of Moss ’ coalgebraic logic, for coalgebras of arbitrary type. ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
(Show Context)
abstract. We give a sound and complete derivation system for the valid formulas in the finitary version of Moss ’ coalgebraic logic, for coalgebras of arbitrary type.