Results 1  10
of
27
A Convenient Category of Domains
 GDP FESTSCHRIFT ENTCS, TO APPEAR
"... We motivate and define a category of topological domains, whose objects are certain topological spaces, generalising the usual ωcontinuous dcppos of domain theory. Our category supports all the standard constructions of domain theory, including the solution of recursive domain equations. It also su ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
We motivate and define a category of topological domains, whose objects are certain topological spaces, generalising the usual ωcontinuous dcppos of domain theory. Our category supports all the standard constructions of domain theory, including the solution of recursive domain equations. It also supports the construction of free algebras for (in)equational theories, can be used as the basis for a theory of computability, and provides a model of parametric polymorphism.
Infinite sets that admit fast exhaustive search
 In Proceedings of the 22nd Annual IEEE Symposium on Logic In Computer Science
, 2007
"... Abstract. Perhaps surprisingly, there are infinite sets that admit mechanical exhaustive search in finite time. We investigate three related questions: What kinds of infinite sets admit mechanical exhaustive search in finite time? How do we systematically build such sets? How fast can exhaustive sea ..."
Abstract

Cited by 13 (8 self)
 Add to MetaCart
Abstract. Perhaps surprisingly, there are infinite sets that admit mechanical exhaustive search in finite time. We investigate three related questions: What kinds of infinite sets admit mechanical exhaustive search in finite time? How do we systematically build such sets? How fast can exhaustive search over infinite sets be performed? Keywords. Highertype computability and complexity, Kleene–Kreisel functionals, PCF, Haskell, topology. 1.
EXHAUSTIBLE SETS IN HIGHERTYPE COMPUTATION
, 2008
"... We say that a set is exhaustible if it admits algorithmic universal quantification for continuous predicates in finite time, and searchable if there is an algorithm that, given any continuous predicate, either selects an element for which the predicate holds or else tells there is no example. The C ..."
Abstract

Cited by 13 (12 self)
 Add to MetaCart
We say that a set is exhaustible if it admits algorithmic universal quantification for continuous predicates in finite time, and searchable if there is an algorithm that, given any continuous predicate, either selects an element for which the predicate holds or else tells there is no example. The Cantor space of infinite sequences of binary digits is known to be searchable. Searchable sets are exhaustible, and we show that the converse also holds for sets of hereditarily total elements in the hierarchy of continuous functionals; moreover, a selection functional can be constructed uniformly from a quantification functional. We prove that searchable sets are closed under intersections with decidable sets, and under the formation of computable images and of finite and countably infinite products. This is related to the fact, established here, that exhaustible sets are topologically compact. We obtain a complete description of exhaustible total sets by developing a computational version of a topological Arzela–Ascoli type characterization of compact subsets of function spaces. We also show that, in the nonempty case, they are precisely the computable images of the Cantor space. The emphasis of this paper is on the theory of exhaustible and searchable sets, but we also briefly sketch applications.
On Noetherian Spaces
"... A topological space is Noetherian iff every open is compact. Our starting point is that this notion generalizes that of wellquasi order, in the sense that an Alexandroffdiscrete space is Noetherian iff its specialization quasiordering is well. For more general spaces, this opens the way to verify ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
A topological space is Noetherian iff every open is compact. Our starting point is that this notion generalizes that of wellquasi order, in the sense that an Alexandroffdiscrete space is Noetherian iff its specialization quasiordering is well. For more general spaces, this opens the way to verifying infinite transition systems based on nonwell quasi ordered sets, but where the preimage operator satisfies an additional continuity assumption. The technical development rests heavily on techniques arising from topology and domain theory, including sobriety and the de Groot dual of a stably compact space. We show that the category Nthr of Noetherian spaces is finitely complete and finitely cocomplete. Finally, we note that if X is a Noetherian space, then the set of all (even infinite) subsets of X is again Noetherian, a result that fails for wellquasi orders. 1.
Selection Functions, Bar Recursion and Backward Induction
 MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 20, PP 127168
, 2010
"... ..."
Computational Effects in Topological Domain Theory
 Electronic Notes in Theoretical Computer Science 158
, 2006
"... This paper contributes towards establishing the category QCB, of topological quotients of countably based spaces, and its subcategory TP, of topological predomains, as a flexible framework for denotational semantics of programming languages. In particular, we show that both categories have free alg ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
This paper contributes towards establishing the category QCB, of topological quotients of countably based spaces, and its subcategory TP, of topological predomains, as a flexible framework for denotational semantics of programming languages. In particular, we show that both categories have free algebras for arbitrary countable parametrised equational theories, and are thus, following ideas of Plotkin and Power, able to model a wide range of computational effects. Furthermore, we give an explicit construction of the free algebras.
On the ubiquity of certain total type structures
 UNDER CONSIDERATION FOR PUBLICATION IN MATH. STRUCT. IN COMP. SCIENCE
, 2007
"... It is a fact of experience from the study of higher type computability that a wide range of approaches to defining a class of (hereditarily) total functionals over N leads in practice to a relatively small handful of distinct type structures. Among these are the type structure C of KleeneKreisel co ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
It is a fact of experience from the study of higher type computability that a wide range of approaches to defining a class of (hereditarily) total functionals over N leads in practice to a relatively small handful of distinct type structures. Among these are the type structure C of KleeneKreisel continuous functionals, its effective substructure C eff, and the type structure HEO of the hereditarily effective operations. However, the proofs of the relevant equivalences are often nontrivial, and it is not immediately clear why these particular type structures should arise so ubiquitously. In this paper we present some new results which go some way towards explaining this phenomenon. Our results show that a large class of extensional collapse constructions always give rise to C, C eff or HEO (as appropriate). We obtain versions of our results for both the “standard” and “modified” extensional collapse constructions. The proofs make essential use of a technique due to Normann. Many new results, as well as some previously known ones, can be obtained as instances of our theorems, but more importantly, the proofs apply uniformly to a whole family of constructions, and provide strong evidence that the above three type structures are highly canonical mathematical objects.
Two Preservation Results for Countable Products of Sequential Spaces
 UNDER CONSIDERATION FOR PUBLICATION IN MATH. STRUCT. IN COMP. SCIENCE
"... We prove two results about the sequential topology on countable products of sequential topological spaces. First, we show that a countable product of topological quotients yields a quotient map between the product spaces. Second, we show that the reflection from sequential spaces to its subcategory ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
We prove two results about the sequential topology on countable products of sequential topological spaces. First, we show that a countable product of topological quotients yields a quotient map between the product spaces. Second, we show that the reflection from sequential spaces to its subcategory of monotone ωconvergence spaces preserves countable products. These results are motivated by applications to the modelling of computation on nondiscrete spaces.
A Constructive Model of Uniform Continuity
"... Abstract. We construct a continuous model of Gödel’s system T and its logic HA ω in which all functions from the Cantor space 2 N to the natural numbers are uniformly continuous. Our development is constructive, and has been carried out in intensional type theory in Agda notation, so that, in partic ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract. We construct a continuous model of Gödel’s system T and its logic HA ω in which all functions from the Cantor space 2 N to the natural numbers are uniformly continuous. Our development is constructive, and has been carried out in intensional type theory in Agda notation, so that, in particular, we can compute moduli of uniform continuity of Tdefinable functions 2 N → N. Moreover, the model has a continuous Fan functional of type (2 N → N) → N that calculates moduli of uniform continuity. We work with sheaves, and with a full subcategory of concrete sheaves that can be presented as sets with structure, which can be regarded as spaces, and whose natural transformations can be regarded as continuous maps.