Results 1 
7 of
7
Enriched stratified systems for the foundations of category
"... This is the fourth in a series of intermittent papers on the foundations of category theory stretching back over more than thirtyfive years. The first three were “Settheoretical foundations of category theory ” [1969], “Categorical foundations and foundations of category theory ” [1977], and much ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
This is the fourth in a series of intermittent papers on the foundations of category theory stretching back over more than thirtyfive years. The first three were “Settheoretical foundations of category theory ” [1969], “Categorical foundations and foundations of category theory ” [1977], and much more recently, “Typical ambiguity: Trying to have
Loss of vision: How mathematics turned blind while it learned to see more clearly
 In B. Löwe and T. Müller (Eds.), Philosophy of Mathematics: Sociological Aspects and Mathematical Practice
, 2010
"... The aim of this paper is to provide a framework for the discussion of mathematical ontology that is rooted in actual mathematical practice, i.e., the way in which mathematicians have introduced and dealt with mathematical ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
The aim of this paper is to provide a framework for the discussion of mathematical ontology that is rooted in actual mathematical practice, i.e., the way in which mathematicians have introduced and dealt with mathematical
Russell’s Absolutism vs.(?)
"... Along with Frege, Russell maintained an absolutist stance regarding the subject matter of mathematics, revealed rather than imposed, or proposed, by logical analysis. The Fregean definition of cardinal number, for example, is viewed as (essentially) correct, not merely adequate for mathematics. And ..."
Abstract
 Add to MetaCart
Along with Frege, Russell maintained an absolutist stance regarding the subject matter of mathematics, revealed rather than imposed, or proposed, by logical analysis. The Fregean definition of cardinal number, for example, is viewed as (essentially) correct, not merely adequate for mathematics. And Dedekind’s “structuralist” views come in for criticism in the Principles. But, on reflection, Russell also flirted with views very close to a (different) version of structuralism. Main varieties of modern structuralism and their challenges are reviewed, taking account of Russell’s insights. Problems of absolutism plague some versions, and, interestingly, Russell’s critique of Dedekind can be extended to one of them, ante rem structuralism. This leaves modalstructuralism and a category theoretic approach as remaining nonabsolutist
Category Theory and Structuralism
, 2009
"... The term structuralism occurred in several branches of the humanities and the sciences in the period 1929 – 1970: in Linguistics (Ferdinand de Saussure, Roman Jakobson), Anthropology (Claude LéviStrauss), Developmental psychology (Jean Piaget), Literature (Workshop for potential literature, Raymond ..."
Abstract
 Add to MetaCart
The term structuralism occurred in several branches of the humanities and the sciences in the period 1929 – 1970: in Linguistics (Ferdinand de Saussure, Roman Jakobson), Anthropology (Claude LéviStrauss), Developmental psychology (Jean Piaget), Literature (Workshop for potential literature, Raymond Queneau) and in Mathematics (Nicolas Bourbaki). To the layman the structuralist movement in mathematics was perhaps most visible the form of New Math, which was strongly influenced by the Bourbaki school. It has been argued in (Aubin 1997) that there were cultural connections between these movements. (See also A. Aczel 2007.) Some of these interactions may be regarded as rather superficial. The epistemologist Piaget however was very much influenced by Bourbaki, and seems to have suggested that those patterns of thought used to explain cognitive development were closely related to the mathematical “mother structures ” found by Bourbaki. On a very general level, structuralism refers to a mode of thinking involving abstraction from specifics and systematic identification and naming of common patterns. It is the relation of objects under study to each other that is of importance rather than their specific appearance, or “nature”. In mathematics, Richard Dedekind may be said to be the first structuralist. He described the positive integers (1, 2, 3,...) as positions in an infinite progression of elements (a socalled simply infinite system) 1 � � 2
Only up to isomorphism? Category theory and the . . .
"... Does category theory provide a foundation for mathematics that is autonomous with respect to the orthodox foundation in a set theory such as ZFC? We distinguish three types of autonomy: logical, conceptual, and justificatory. Focusing on a categorical theory of sets, we argue that a strong case can ..."
Abstract
 Add to MetaCart
Does category theory provide a foundation for mathematics that is autonomous with respect to the orthodox foundation in a set theory such as ZFC? We distinguish three types of autonomy: logical, conceptual, and justificatory. Focusing on a categorical theory of sets, we argue that a strong case can be made for its logical and conceptual autonomy. Its justificatory autonomy turns on whether the objects of a foundation for mathematics should be specified only up to isomorphism, as is customary in other branches of contemporary mathematics. If such a specification suffices, then a categorytheoretical approach will be highly appropriate. But if sets have a richer ‘nature ’ than is preserved under isomorphism, then such an approach will be inadequate.
FOUNDATIONS OF UNLIMITED CATEGORY THEORY: WHAT REMAINS TO BE DONE
"... Abstract. Following a discussion of various forms of settheoretical foundations of category theory and the controversial question of whether category theory does or can provide an autonomous foundation of mathematics, this article concentrates on the question whether there is a foundation for “unli ..."
Abstract
 Add to MetaCart
Abstract. Following a discussion of various forms of settheoretical foundations of category theory and the controversial question of whether category theory does or can provide an autonomous foundation of mathematics, this article concentrates on the question whether there is a foundation for “unlimited ” or “naive ” category theory. The author proposed four criteria for such some years ago. The article describes how much had previously been accomplished on one approach to meeting those criteria, then takes care of one important obstacle that had been met in that approach, and finally explains what remains to be done if one is to have a fully satisfactory solution. From the very beginnings of the subject of category theory as introduced by Eilenberg & Mac Lane (1945) it was recognized that the notion of category lends itself naturally to
Structuralism
"... With the rise of multiple geometries in the nineteenth century, and in the last century the rise of abstract algebra, of the axiomatic method, the settheoretic foundations of mathematics, and the influential work of the Bourbaki, certain views called “structuralist ” have become commonplace. ..."
Abstract
 Add to MetaCart
With the rise of multiple geometries in the nineteenth century, and in the last century the rise of abstract algebra, of the axiomatic method, the settheoretic foundations of mathematics, and the influential work of the Bourbaki, certain views called “structuralist ” have become commonplace.