Results 1  10
of
372
Atomic decomposition by basis pursuit
 SIAM Journal on Scientific Computing
, 1998
"... Abstract. The timefrequency and timescale communities have recently developed a large number of overcomplete waveform dictionaries — stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several meth ..."
Abstract

Cited by 1637 (43 self)
 Add to MetaCart
Abstract. The timefrequency and timescale communities have recently developed a large number of overcomplete waveform dictionaries — stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for decomposition have been proposed, including the method of frames (MOF), Matching pursuit (MP), and, for special dictionaries, the best orthogonal basis (BOB). Basis Pursuit (BP) is a principle for decomposing a signal into an “optimal ” superposition of dictionary elements, where optimal means having the smallest l 1 norm of coefficients among all such decompositions. We give examples exhibiting several advantages over MOF, MP, and BOB, including better sparsity and superresolution. BP has interesting relations to ideas in areas as diverse as illposed problems, in abstract harmonic analysis, total variation denoising, and multiscale edge denoising. BP in highly overcomplete dictionaries leads to largescale optimization problems. With signals of length 8192 and a wavelet packet dictionary, one gets an equivalent linear program of size 8192 by 212,992. Such problems can be attacked successfully only because of recent advances in linear programming by interiorpoint methods. We obtain reasonable success with a primaldual logarithmic barrier method and conjugategradient solver.
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 471 (11 self)
 Add to MetaCart
We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to SDP. Next we present an interior point algorithm which converges to the optimal solution in polynomial time. The approach is a direct extension of Ye's projective method for linear programming. We also argue that most known interior point methods for linear programs can be transformed in a mechanical way to algorithms for SDP with proofs of convergence and polynomial time complexity also carrying over in a similar fashion. Finally we study the significance of these results in a variety of combinatorial optimization problems including the general 01 integer programs, the maximum clique and maximum stable set problems in perfect graphs, the maximum k partite subgraph problem in graphs, and va...
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
 IEEE Journal of Selected Topics in Signal Processing
, 2007
"... Abstract—Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined wi ..."
Abstract

Cited by 285 (15 self)
 Add to MetaCart
Abstract—Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a sparsenessinducing (ℓ1) regularization term.Basis pursuit, the least absolute shrinkage and selection operator (LASSO), waveletbased deconvolution, and compressed sensing are a few wellknown examples of this approach. This paper proposes gradient projection (GP) algorithms for the boundconstrained quadratic programming (BCQP) formulation of these problems. We test variants of this approach that select the line search parameters in different ways, including techniques based on the BarzilaiBorwein method. Computational experiments show that these GP approaches perform well in a wide range of applications, often being significantly faster (in terms of computation time) than competing methods. Although the performance of GP methods tends to degrade as the regularization term is deemphasized, we show how they can be embedded in a continuation scheme to recover their efficient practical performance. A. Background I.
A column approximate minimum degree ordering algorithm
, 2000
"... Sparse Gaussian elimination with partial pivoting computes the factorization PAQ = LU of a sparse matrix A, where the row ordering P is selected during factorization using standard partial pivoting with row interchanges. The goal is to select a column preordering, Q, based solely on the nonzero patt ..."
Abstract

Cited by 251 (50 self)
 Add to MetaCart
Sparse Gaussian elimination with partial pivoting computes the factorization PAQ = LU of a sparse matrix A, where the row ordering P is selected during factorization using standard partial pivoting with row interchanges. The goal is to select a column preordering, Q, based solely on the nonzero pattern of A such that the factorization remains as sparse as possible, regardless of the subsequent choice of P. The choice of Q can have a dramatic impact on the number of nonzeros in L and U. One scheme for determining a good column ordering for A is to compute a symmetric ordering that reduces fillin in the Cholesky factorization of ATA. This approach, which requires the sparsity structure of ATA to be computed, can be expensive both in
LOQO: An interior point code for quadratic programming
, 1994
"... ABSTRACT. This paper describes a software package, called LOQO, which implements a primaldual interiorpoint method for general nonlinear programming. We focus in this paper mainly on the algorithm as it applies to linear and quadratic programming with only brief mention of the extensions to convex ..."
Abstract

Cited by 153 (9 self)
 Add to MetaCart
ABSTRACT. This paper describes a software package, called LOQO, which implements a primaldual interiorpoint method for general nonlinear programming. We focus in this paper mainly on the algorithm as it applies to linear and quadratic programming with only brief mention of the extensions to convex and general nonlinear programming, since a detailed paper describing these extensions were published recently elsewhere. In particular, we emphasize the importance of establishing and maintaining symmetric quasidefiniteness of the reduced KKT system. We show that the industry standard MPS format can be nicely formulated in such a way to provide quasidefiniteness. Computational results are included for a variety of linear and quadratic programming problems. 1.
SecondOrder Cone Programming
 Mathematical Programming
, 2001
"... In this paper we survey the second order cone programming problem (SOCP). First we present several applications of the problem in various areas of engineering and robust optimization problems. We also give examples of optimization problems that can be cast as SOCPs. Next we review an algebraic struc ..."
Abstract

Cited by 139 (8 self)
 Add to MetaCart
In this paper we survey the second order cone programming problem (SOCP). First we present several applications of the problem in various areas of engineering and robust optimization problems. We also give examples of optimization problems that can be cast as SOCPs. Next we review an algebraic structure that is connected to SOCP. This algebra is a special case of a Euclidean Jordan algebra. After presenting duality theory, complementary slackness conditions, and definitions and algebraic characterizations of primal and dual nondegeneracy and strict complementarity we review the logarithmic barrier function for the SOCP problem and survey the pathfollowing interior point algorithms for it. Next we examine numerically stable methods for solving the interior point methods and study ways that sparsity in the input data can be exploited. Finally we give some current and future research direction in SOCP.
Interior methods for nonlinear optimization
 SIAM Review
, 2002
"... Abstract. Interior methods are an omnipresent, conspicuous feature of the constrained optimization landscape today, but it was not always so. Primarily in the form of barrier methods, interiorpoint techniques were popular during the 1960s for solving nonlinearly constrained problems. However, their ..."
Abstract

Cited by 76 (4 self)
 Add to MetaCart
Abstract. Interior methods are an omnipresent, conspicuous feature of the constrained optimization landscape today, but it was not always so. Primarily in the form of barrier methods, interiorpoint techniques were popular during the 1960s for solving nonlinearly constrained problems. However, their use for linear programming was not even contemplated because of the total dominance of the simplex method. Vague but continuing anxiety about barrier methods eventually led to their abandonment in favor of newly emerging, apparently more efficient alternatives such as augmented Lagrangian and sequential quadratic programming methods. By the early 1980s, barrier methods were almost without exception regarded as a closed chapter in the history of optimization. This picture changed dramatically with Karmarkar’s widely publicized announcement in 1984 of a fast polynomialtime interior method for linear programming; in 1985, a formal connection was established between his method and classical barrier methods. Since then, interior methods have advanced so far, so fast, that their influence has transformed both the theory and practice of constrained optimization. This article provides a condensed, selective look at classical material and recent research about interior methods for nonlinearly constrained optimization.
Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming
, 1997
"... Given a partial symmetric matrix A with only certain elements specified, the Euclidean distance matrix completion problem (IgDMCP) is to find the unspecified elements of A that make A a Euclidean distance matrix (IgDM). In this paper, we follow the successful approach in [20] and solve the IgDMCP by ..."
Abstract

Cited by 69 (14 self)
 Add to MetaCart
Given a partial symmetric matrix A with only certain elements specified, the Euclidean distance matrix completion problem (IgDMCP) is to find the unspecified elements of A that make A a Euclidean distance matrix (IgDM). In this paper, we follow the successful approach in [20] and solve the IgDMCP by generalizing the completion problem to allow for approximate completions. In particular, we introduce a primaldual interiorpoint algorithm that solves an equivalent (quadratic objective function) semidefinite programming problem (SDP). Numerical results are included which illustrate the efficiency and robustness of our approach. Our randomly generated problems consistently resulted in low dimensional solutions when no completion existed.
Objectoriented software for quadratic programming
 ACM Transactions on Mathematical Software
, 2001
"... The objectoriented software package OOQP for solving convex quadratic programming problems (QP) is described. The primaldual interior point algorithms supplied by OOQP are implemented in a way that is largely independent of the problem structure. Users may exploit problem structure by supplying li ..."
Abstract

Cited by 60 (2 self)
 Add to MetaCart
The objectoriented software package OOQP for solving convex quadratic programming problems (QP) is described. The primaldual interior point algorithms supplied by OOQP are implemented in a way that is largely independent of the problem structure. Users may exploit problem structure by supplying linear algebra, problem data, and variable classes that are customized to their particular applications. The OOQP distribution contains default implementations that solve several important QP problem types, including general sparse and dense QPs, boundconstrained QPs, and QPs arising from support vector machines and Huber regression. The implementations supplied with the OOQP distribution are based on such well known linear algebra packages as MA27/57, LAPACK, and PETSc. OOQP demonstrates the usefulness of objectoriented design in optimization software development, and establishes standards that can be followed in the design of software packages for other classes of optimization problems. A number of the classes in OOQP may also be reusable directly in other codes.
Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines
 in Advances in Neural Information Processing Systems 15
, 2002
"... We derive multiplicative updates for solving the nonnegative quadratic programming problem in support vector machines (SVMs). The updates have a simple closed form, and we prove that they converge monotonically to the solution of the maximum margin hyperplane. The updates optimize the traditiona ..."
Abstract

Cited by 54 (5 self)
 Add to MetaCart
We derive multiplicative updates for solving the nonnegative quadratic programming problem in support vector machines (SVMs). The updates have a simple closed form, and we prove that they converge monotonically to the solution of the maximum margin hyperplane. The updates optimize the traditionally proposed objective function for SVMs. They do not involve any heuristics such as choosing a learning rate or deciding which variables to update at each iteration. They can be used to adjust all the quadratic programming variables in parallel with a guarantee of improvement at each iteration. We analyze the asymptotic convergence of the updates and show that the coefficients of nonsupport vectors decay geometrically to zero at a rate that depends on their margins. In practice, the updates converge very rapidly to good classifiers.