Results 1  10
of
3,870
Fast approximate energy minimization via graph cuts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when v ..."
Abstract

Cited by 2127 (61 self)
 Add to MetaCart
(Show Context)
In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when very large moves are allowed. The first move we consider is an αβswap: for a pair of labels α, β, this move exchanges the labels between an arbitrary set of pixels labeled α and another arbitrary set labeled β. Our first algorithm generates a labeling such that there is no swap move that decreases the energy. The second move we consider is an αexpansion: for a label α, this move assigns an arbitrary set of pixels the label α. Our second
CONDENSATION  conditional density propagation for visual tracking
 International Journal of Computer Vision
, 1998
"... The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses "factored sampling", previously appli ..."
Abstract

Cited by 1499 (12 self)
 Add to MetaCart
(Show Context)
The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses "factored sampling", previously applied to the interpretation of static images, in which the probability distribution of possible interpretations is represented by a randomly generated set. Condensation uses learned dynamical models, together with visual observations, to propagate the random set over time. The result is highly robust tracking of agile motion. Notwithstanding the use of stochastic methods, the algorithm runs in near realtime. Contents 1 Tracking curves in clutter 2 2 Discretetime propagation of state density 3 3 Factored sampling 6 4 The Condensation algorithm 8 5 Stochastic dynamical models for curve motion 10 6 Observation model 13 7 Applying the Condensation algorithm to videostreams 17 8 Conclusions 26 A Nonline...
Geodesic Active Contours
, 1997
"... A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both in ..."
Abstract

Cited by 1422 (47 self)
 Add to MetaCart
(Show Context)
A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both interior and exterior boundaries. The proposed approach is based on the relation between active contours and the computation of geodesics or minimal distance curves. The minimal distance curve lays in a Riemannian space whose metric is defined by the image content. This geodesic approach for object segmentation allows to connect classical “snakes ” based on energy minimization and geometric active contours based on the theory of curve evolution. Previous models of geometric active contours are improved, allowing stable boundary detection when their gradients suffer from large variations, including gaps. Formal results concerning existence, uniqueness, stability, and correctness of the evolution are presented as well. The scheme was implemented using an efficient algorithm for curve evolution. Experimental results of applying the scheme to real images including objects with holes and medical data imagery demonstrate its power. The results may be extended to 3D object segmentation as well.
Active Contours without Edges
, 2001
"... In this paper, we propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, MumfordShah functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by gradient. We minimize an energy ..."
Abstract

Cited by 1188 (37 self)
 Add to MetaCart
In this paper, we propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, MumfordShah functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by gradient. We minimize an energy which can be seen as a particular case of the minimal partition problem. In the level set formulation, the problem becomes a "meancurvature flow"like evolving the active contour, which will stop on the desired boundary. However, the stopping term does not depend on the gradient of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. We will give a numerical algorithm using finite differences. Finally, we will present various experimental results and in particular some examples for which the classical snakes methods based on the gradient are not applicable. Also, the initial curve can be anywhere in the image, and interior contours are automatically detected.
"GrabCut”  interactive foreground extraction using iterated graph cuts
 ACM TRANS. GRAPH
, 2004
"... The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently ..."
Abstract

Cited by 1140 (36 self)
 Add to MetaCart
The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently, an approach based on optimization by graphcut has been developed which successfully combines both types of information. In this paper we extend the graphcut approach in three respects. First, we have developed a more powerful, iterative version of the optimisation. Secondly, the power of the iterative algorithm is used to simplify substantially the user interaction needed for a given quality of result. Thirdly, a robust algorithm for “border matting ” has been developed to estimate simultaneously the alphamatte around an object boundary and the colours of foreground pixels. We show that for moderately difficult examples the proposed method outperforms competitive tools.
Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in ND Images
, 2001
"... In this paper we describe a new technique for general purpose interactive segmentation of Ndimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph ..."
Abstract

Cited by 1013 (20 self)
 Add to MetaCart
In this paper we describe a new technique for general purpose interactive segmentation of Ndimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph cuts are used to find the globally optimal segmentation of the Ndimensional image. The obtained solution gives the best balance of boundary and region properties among all segmentations satisfying the constraints. The topology of our segmentation is unrestricted and both “object” and “background” segments may consist of several isolatedparts. Some experimental results are presented in the context ofphotohideo editing and medical image segmentation. We also demonstrate an interesting Gestalt example. A fast implementation of our segmentation method is possible via a new mar$ow algorithm in [2].
Elastically deformable models
 Computer Graphics
, 1987
"... The goal of visual modeling research is to develop mathematical models and associated algorithms for the analysis and synthesis of visual information. Image analysis and synthesis characterize the domains of computer vision and computer graphics, respectively. For nearly three decades, the vision an ..."
Abstract

Cited by 880 (19 self)
 Add to MetaCart
(Show Context)
The goal of visual modeling research is to develop mathematical models and associated algorithms for the analysis and synthesis of visual information. Image analysis and synthesis characterize the domains of computer vision and computer graphics, respectively. For nearly three decades, the vision and graphics fields have been developing almost entirely independently—this despite the fact that, at least conceptually, the two disciplines are bound in a mutually converse relationship. Graphics, the direct problem, involves the synthesis of images from object models, whereas vision, the inverse problem, involves the analysis of images to infer object models. Visual modeling takes a unified approach to vision and graphics via modeling that exploits computational physics. In addition to geometry, physicsbased modeling employs forces, torques, internal strain energies, and other physical quantities to control the creation and evolution of models. Mathematically, the approach prescribes systems of dynamic (ordinary and partial) differential equations to govern model behavior. These equations of motion may be
Detecting faces in images: A survey
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2002
"... Images containing faces are essential to intelligent visionbased human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image se ..."
Abstract

Cited by 831 (4 self)
 Add to MetaCart
(Show Context)
Images containing faces are essential to intelligent visionbased human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image sequence have been identified and localized. To build fully automated systems that analyze the information contained in face images, robust and efficient face detection algorithms are required. Given a single image, the goal of face detection is to identify all image regions which contain a face regardless of its threedimensional position, orientation, and the lighting conditions. Such a problem is challenging because faces are nonrigid and have a high degree of variability in size, shape, color, and texture. Numerous techniques have been developed to detect faces in a single image, and the purpose of this paper is to categorize and evaluate these algorithms. We also discuss relevant issues such as data collection, evaluation metrics, and benchmarking. After analyzing these algorithms and identifying their limitations, we conclude with several promising directions for future research.
A Tutorial on Visual Servo Control
 IEEE Transactions on Robotics and Automation
, 1996
"... This paper provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review ..."
Abstract

Cited by 822 (25 self)
 Add to MetaCart
(Show Context)
This paper provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process. We then present a taxonomy of visual servo control systems. The two major classes of systems, positionbased and imagebased systems, are then discussed. Since any visual servo system must be capable of tracking image features in a sequence of images, we include an overview of featurebased and correlationbased methods for tracking. We conclude the tutorial with a number of observations on the current directions of the research field of visual servo control. 1 Introduction Today there are over 800,000 robots in the world, mostly working in factory environment...
Shape modeling with front propagation: A level set approach
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1995
"... Abstract Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which retains some of the attractive features of existing methods ..."
Abstract

Cited by 804 (20 self)
 Add to MetaCart
Abstract Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which retains some of the attractive features of existing methods and overcomes some of their limitations. Our techniques can be applied to model arbitrarily complex shapes, which include shapes with significant protrusions, and to situations where no a priori assumption about the object’s topology is made. A single instance of our model, when presented with an image having more than one object of interest, has the ability to split freely to represent each object. This method is based on the ideas developed by Osher and Sethian to model propagating solidhiquid interfaces with curvaturedependent speeds. The interface (front) is a closed, nonintersecting, hypersurface flowing along its gradient field with constant speed or a speed that depends on the curvature. It is moved by solving a “HamiltonJacob? ’ type equation written for a function in which the interface is a particular level set. A speed term synthesizpd from the image is used to stop the interface in the vicinity of object boundaries. The resulting equation of motion is solved by employing entropysatisfying upwind finite difference schemes. We present a variety of ways of computing evolving front, including narrow bands, reinitializations, and different stopping criteria. The efficacy of the scheme is demonstrated with numerical experiments on some synthesized images and some low contrast medical images. Index Terms Shape modeling, shape recovery, interface motion, level sets, hyperbolic conservation laws, HamiltonJacobi