Results 1  10
of
92
Compressed fulltext indexes
 ACM COMPUTING SURVEYS
, 2007
"... Fulltext indexes provide fast substring search over large text collections. A serious problem of these indexes has traditionally been their space consumption. A recent trend is to develop indexes that exploit the compressibility of the text, so that their size is a function of the compressed text l ..."
Abstract

Cited by 173 (78 self)
 Add to MetaCart
Fulltext indexes provide fast substring search over large text collections. A serious problem of these indexes has traditionally been their space consumption. A recent trend is to develop indexes that exploit the compressibility of the text, so that their size is a function of the compressed text length. This concept has evolved into selfindexes, which in addition contain enough information to reproduce any text portion, so they replace the text. The exciting possibility of an index that takes space close to that of the compressed text, replaces it, and in addition provides fast search over it, has triggered a wealth of activity and produced surprising results in a very short time, and radically changed the status of this area in less than five years. The most successful indexes nowadays are able to obtain almost optimal space and search time simultaneously. In this paper we present the main concepts underlying selfindexes. We explain the relationship between text entropy and regularities that show up in index structures and permit compressing them. Then we cover the most relevant selfindexes up to date, focusing on the essential aspects on how they exploit the text compressibility and how they solve efficiently various search problems. We aim at giving the theoretical background to understand and follow the developments in this area.
Alignment of whole genomes
 Nucleic Acids Res
, 1999
"... A new system for aligning whole genome sequences is described. Using an efficient data structure called a suffix tree, the system is able to rapidly align sequences containing millions of nucleotides. Its use is demonstrated on two strains of Mycobacterium tuberculosis, on two less similar species o ..."
Abstract

Cited by 147 (5 self)
 Add to MetaCart
A new system for aligning whole genome sequences is described. Using an efficient data structure called a suffix tree, the system is able to rapidly align sequences containing millions of nucleotides. Its use is demonstrated on two strains of Mycobacterium tuberculosis, on two less similar species of Mycoplasma bacteria and on two syntenic sequences from human chromosome 12 and mouse chromosome 6. In each case it found an alignment of the input sequences, using between 30 s and 2 min of computation time. From the system output, information on single nucleotide changes, translocations and homologous genes can easily be extracted. Use of the algorithm should facilitate analysis of syntenic chromosomal regions, straintostrain comparisons, evolutionary comparisons and genomic duplications.
REPuter: fast computation of maximal repeats in complete genomes
, 1995
"... Summary: A software tool was implemented that computes exact repeats and palindromes in entire genomes very efficiently. Availability: Via the Bielefeld Bioinformatics Server (http://bibiserv.techfak.unibielefeld.de/reputer/). ..."
Abstract

Cited by 94 (3 self)
 Add to MetaCart
Summary: A software tool was implemented that computes exact repeats and palindromes in entire genomes very efficiently. Availability: Via the Bielefeld Bioinformatics Server (http://bibiserv.techfak.unibielefeld.de/reputer/).
Indexing Text using the ZivLempel Trie
 Journal of Discrete Algorithms
, 2002
"... Let a text of u characters over an alphabet of size be compressible to n symbols by the LZ78 or LZW algorithm. We show that it is possible to build a data structure based on the ZivLempel trie that takes 4n log 2 n(1+o(1)) bits of space and reports the R occurrences of a pattern of length m in ..."
Abstract

Cited by 64 (43 self)
 Add to MetaCart
Let a text of u characters over an alphabet of size be compressible to n symbols by the LZ78 or LZW algorithm. We show that it is possible to build a data structure based on the ZivLempel trie that takes 4n log 2 n(1+o(1)) bits of space and reports the R occurrences of a pattern of length m in worst case time O(m log(m)+(m+R)log n).
Engineering a lightweight suffix array construction algorithm (Extended Abstract)
"... In this paper we consider the problem of computing the suffix array of a text T [1, n]. This problem consists in sorting the suffixes of T in lexicographic order. The suffix array [16] (or pat array [9]) is a simple, easy to code, and elegant data structure used for several fundamental string matchi ..."
Abstract

Cited by 59 (4 self)
 Add to MetaCart
In this paper we consider the problem of computing the suffix array of a text T [1, n]. This problem consists in sorting the suffixes of T in lexicographic order. The suffix array [16] (or pat array [9]) is a simple, easy to code, and elegant data structure used for several fundamental string matching problems involving both linguistic texts and biological data [4, 11]. Recently, the interest in this data structure has been revitalized by its use as a building block for three novel applications: (1) the BurrowsWheeler compression algorithm [3], which is a provably [17] and practically [20] effective compression tool; (2) the construction of succinct [10, 19] and compressed [7, 8] indexes; the latter can store both the input text and its fulltext index using roughly the same space used by traditional compressors for the text alone; and (3) algorithms for clustering and ranking the answers to user queries in websearch engines [22]. In all these applications the construction of the suffix array is the computational bottleneck both in time and space. This motivated our interest in designing yet another suffix array construction algorithm which is fast and "lightweight" in the sense that it uses small space...
Succinct suffix arrays based on runlength encoding
 Nordic Journal of Computing
, 2005
"... A succinct fulltext selfindex is a data structure built on a text T = t1t2...tn, which takes little space (ideally close to that of the compressed text), permits efficient search for the occurrences of a pattern P = p1p2... pm in T, and is able to reproduce any text substring, so the selfindex re ..."
Abstract

Cited by 53 (32 self)
 Add to MetaCart
A succinct fulltext selfindex is a data structure built on a text T = t1t2...tn, which takes little space (ideally close to that of the compressed text), permits efficient search for the occurrences of a pattern P = p1p2... pm in T, and is able to reproduce any text substring, so the selfindex replaces the text. Several remarkable selfindexes have been developed in recent years. Many of those take space proportional to nH0 or nHk bits, where Hk is the kth order empirical entropy of T. The time to count how many times does P occur in T ranges from O(m) to O(m log n). In this paper we present a new selfindex, called RLFM index for “runlength FMindex”, that counts the occurrences of P in T in O(m) time when the alphabet size is σ = O(polylog(n)). The RLFM index requires nHk log σ + O(n) bits of space, for any k ≤ α log σ n and constant 0 < α < 1. Previous indexes that achieve O(m) counting time either require more than nH0 bits of space or require that σ = O(1). We also show that the RLFM index can be enhanced to locate occurrences in the text and display text substrings in time independent of σ. In addition, we prove a close relationship between the kth order entropy of the text and some regularities that show up in their suffix arrays and in the BurrowsWheeler transform of T. This relationship is of independent interest and permits bounding the space occupancy of the RLFM index, as well as that of other existing compressed indexes. Finally, we present some practical considerations in order to implement the RLFM index, obtaining two implementations with different spacetime tradeoffs. We empirically compare our indexes against the best existing implementations and show that they are practical and competitive against those. 1
Succinct Representations of lcp Information and Improvements in the Compressed Suffix Arrays
, 2002
"... We introduce two succinct data structures to solve various string problems. One is for storing the information of lcp, the longest common prefix, between suffixes in the suffix array, and the other is an improvement in the compressed suffix array which supports linear time counting queries for any p ..."
Abstract

Cited by 51 (6 self)
 Add to MetaCart
We introduce two succinct data structures to solve various string problems. One is for storing the information of lcp, the longest common prefix, between suffixes in the suffix array, and the other is an improvement in the compressed suffix array which supports linear time counting queries for any pattern. The former occupies only 2n + o(n) bits for a text of length n for computing lcp between adjacent suffixes in lexicographic order in constant time, and 6n + o(n) bits between any two suffixes. No data structure in the literature attained linear size. The latter has size proportional to the text size and it is applicable to texts on any alphabet Σ such that Σ = log^O(1) n. These spaceeconomical data structures are useful in processing huge amounts of text data.
Breaking a TimeandSpace Barrier in Constructing FullText Indices
"... Suffix trees and suffix arrays are the most prominent fulltext indices, and their construction algorithms are well studied. It has been open for a long time whether these indicescan be constructed in both o(n log n) time and o(n log n)bit working space, where n denotes the length of the text. Int ..."
Abstract

Cited by 50 (3 self)
 Add to MetaCart
Suffix trees and suffix arrays are the most prominent fulltext indices, and their construction algorithms are well studied. It has been open for a long time whether these indicescan be constructed in both o(n log n) time and o(n log n)bit working space, where n denotes the length of the text. Inthe literature, the fastest algorithm runs in O(n) time, whileit requires O(n log n)bit working space. On the other hand,the most spaceefficient algorithm requires O(n)bit working space while it runs in O(n log n) time. This paper breaks the longstanding timeandspace barrier under the unitcost word RAM. We give an algorithm for constructing the suffix array which takes O(n) time and O(n)bit working space, for texts with constantsize alphabets. Note that both the time and the space bounds are optimal. For constructing the suffix tree, our algorithm requires O(n logffl n) time and O(n)bit working space forany 0! ffl! 1. Apart from that, our algorithm can alsobe adopted to build other existing fulltext indices, such as
The enhanced suffix array and its applications to genome analysis
 In Proc. Workshop on Algorithms in Bioinformatics, in Lecture Notes in Computer Science
, 2002
"... Abstract. In large scale applications as computational genome analysis, the space requirement of the suffix tree is a severe drawback. In this paper, we present a uniform framework that enables us to systematically replace every string processing algorithm that is based on a bottomup traversal of a ..."
Abstract

Cited by 43 (5 self)
 Add to MetaCart
Abstract. In large scale applications as computational genome analysis, the space requirement of the suffix tree is a severe drawback. In this paper, we present a uniform framework that enables us to systematically replace every string processing algorithm that is based on a bottomup traversal of a suffix tree by a corresponding algorithm based on an enhanced suffix array (a suffix array enhanced with the lcptable). In this framework, we will show how maximal, supermaximal, and tandem repeats, as well as maximal unique matches can be efficiently computed. Because enhanced suffix arrays require much less space than suffix trees, very large genomes can now be indexed and analyzed, a task which was not feasible before. Experimental results demonstrate that our programs require not only less space but also much less time than other programs developed for the same tasks. 1
When indexing equals compression: Experiments with compressing suffix arrays and applications
, 2004
"... We report on a new and improved version of highorder entropycompressed suffix arrays, which has theoretical performance guarantees similar to those in our earlier work [16], yet represents an improvement in practice. Our experiments indicate that the resulting text index offers stateoftheart co ..."
Abstract

Cited by 43 (5 self)
 Add to MetaCart
We report on a new and improved version of highorder entropycompressed suffix arrays, which has theoretical performance guarantees similar to those in our earlier work [16], yet represents an improvement in practice. Our experiments indicate that the resulting text index offers stateoftheart compression. In particular, we require roughly 20 % of the original text size—without requiring a separate instance of the text—and support fast and powerful searches. To our knowledge, this is the best known method in terms of space for fast searching. 1