Results 1  10
of
44
Abduction in Logic Programming
"... Abduction in Logic Programming started in the late 80s, early 90s, in an attempt to extend logic programming into a framework suitable for a variety of problems in Artificial Intelligence and other areas of Computer Science. This paper aims to chart out the main developments of the field over th ..."
Abstract

Cited by 600 (74 self)
 Add to MetaCart
(Show Context)
Abduction in Logic Programming started in the late 80s, early 90s, in an attempt to extend logic programming into a framework suitable for a variety of problems in Artificial Intelligence and other areas of Computer Science. This paper aims to chart out the main developments of the field over the last ten years and to take a critical view of these developments from several perspectives: logical, epistemological, computational and suitability to application. The paper attempts to expose some of the challenges and prospects for the further development of the field.
Logic program specialisation through partial deduction: Control issues
 THEORY AND PRACTICE OF LOGIC PROGRAMMING
, 2002
"... Program specialisation aims at improving the overall performance of programs by performing source to source transformations. A common approach within functional and logic programming, known respectively as partial evaluation and partial deduction, is to exploit partial knowledge about the input. It ..."
Abstract

Cited by 66 (13 self)
 Add to MetaCart
Program specialisation aims at improving the overall performance of programs by performing source to source transformations. A common approach within functional and logic programming, known respectively as partial evaluation and partial deduction, is to exploit partial knowledge about the input. It is achieved through a wellautomated application of parts of the BurstallDarlington unfold/fold transformation framework. The main challenge in developing systems is to design automatic control that ensures correctness, efficiency, and termination. This survey and tutorial presents the main developments in controlling partial deduction over the past 10 years and analyses their respective merits and shortcomings. It ends with an assessment of current achievements and sketches some remaining research challenges.
Ultimate Wellfounded and Stable Semantics for Logic Programs With Aggregates (Extended Abstract)
 In Proceedings of ICLP01, LNCS 2237
, 2001
"... is relatively straightforward. Another advantage of the ultimate approximation is that in cases where TP is monotone the ultimate wellfounded model will be 2valued and will coincide with the least fixpoint of TP . This is not the case for the standard wellfounded semantics. For example in the sta ..."
Abstract

Cited by 58 (10 self)
 Add to MetaCart
(Show Context)
is relatively straightforward. Another advantage of the ultimate approximation is that in cases where TP is monotone the ultimate wellfounded model will be 2valued and will coincide with the least fixpoint of TP . This is not the case for the standard wellfounded semantics. For example in the standard wellfounded model of the program: # p. p. p is undefined while the associated TP operator is monotone and p is true in the ultimate wellfounded model. One disadvantage of using the ultimate semantics is that it has a higher computational cost even for programs without aggregates. The complexity goes one level higher in the polynomial hierarchy to # 2 for the wellfounded model and to 2 for a stable model which is also complete for this class [2]. Fortunately, by adding aggregates the complexity does not increase further. To give an example of a logic program with aggregates we consider the problem of computing the length of the shortest path between two nodes in a direc
A logic of nonmonotone inductive definitions
 ACM transactions on computational logic
, 2007
"... Wellknown principles of induction include monotone induction and different sorts of nonmonotone induction such as inflationary induction, induction over wellfounded sets and iterated induction. In this work, we define a logic formalizing induction over wellfounded sets and monotone and iterated i ..."
Abstract

Cited by 52 (33 self)
 Add to MetaCart
Wellknown principles of induction include monotone induction and different sorts of nonmonotone induction such as inflationary induction, induction over wellfounded sets and iterated induction. In this work, we define a logic formalizing induction over wellfounded sets and monotone and iterated induction. Just as the principle of positive induction has been formalized in FO(LFP), and the principle of inflationary induction has been formalized in FO(IFP), this paper formalizes the principle of iterated induction in a new logic for NonMonotone Inductive Definitions (IDlogic). The semantics of the logic is strongly influenced by the wellfounded semantics of logic programming. This paper discusses the formalisation of different forms of (non)monotone induction by the wellfounded semantics and illustrates the use of the logic for formalizing mathematical and commonsense knowledge. To model different types of induction found in mathematics, we define several subclasses of definitions, and show that they are correctly formalized by the wellfounded semantics. We also present translations into classical first or second order logic. We develop modularity and totality results and demonstrate their use to analyze and simplify complex definitions. We illustrate the use of the logic for temporal reasoning. The logic formally extends Logic Programming, Abductive Logic Programming and Datalog, and thus formalizes the view on these formalisms as logics of (generalized) inductive definitions. Categories and Subject Descriptors:... [...]:... 1.
A framework for representing and solving NP search problems
 In AAAI
, 2005
"... NP search and decision problems occur widely in AI, and a number of generalpurpose methods for solving them have been developed. The dominant approaches include propositional satisfiability (SAT), constraint satisfaction problems (CSP), and answer set programming (ASP). Here, we propose a declarat ..."
Abstract

Cited by 46 (17 self)
 Add to MetaCart
NP search and decision problems occur widely in AI, and a number of generalpurpose methods for solving them have been developed. The dominant approaches include propositional satisfiability (SAT), constraint satisfaction problems (CSP), and answer set programming (ASP). Here, we propose a declarative constraint programming framework which we believe combines many strengths of these approaches, while addressing weaknesses in each of them. We formalize our approach as a model extension problem, which is based on the classical notion of extension of a structure by new relations. A parameterized version of this problem captures NP. We discuss properties of the formal framework intended to support effective modelling, and prospects for effective solver design.
Legislation as logic programs
 In Logic Programming in Action
, 1992
"... The driving force behind logic programming is the idea that a single formalism suffices for both logic and computation, and that logic subsumes computation. But logic, as this series of volumes proves, is a broad church, with many denominations and communities, coexisting in varying degrees of harm ..."
Abstract

Cited by 39 (2 self)
 Add to MetaCart
The driving force behind logic programming is the idea that a single formalism suffices for both logic and computation, and that logic subsumes computation. But logic, as this series of volumes proves, is a broad church, with many denominations and communities, coexisting in varying degrees of harmony. Computing is,
Inductive Situation Calculus
 Artificial Intelligence
, 2004
"... see [2]. Temporal reasoning has always been a major test case for knowledge representation formalisms. In this paper, we develop an inductive variant of the situation calculus using the Logic for NonMonotone Inductive Definitions (NMID). This is an extension of classical logic that allows for unifo ..."
Abstract

Cited by 36 (23 self)
 Add to MetaCart
see [2]. Temporal reasoning has always been a major test case for knowledge representation formalisms. In this paper, we develop an inductive variant of the situation calculus using the Logic for NonMonotone Inductive Definitions (NMID). This is an extension of classical logic that allows for uniform representation of various forms of definitions, including monotone inductive definitions and nonmonotone forms of inductive definitions such as iterated induction and induction over wellfounded posets [1]. Here, we demonstrate an application of NMIDlogic. The aim is twofold. First, we illustrate the role of NMIDlogic and nonmonotone inductive definitions for knowledge representation by presenting a variant of the situation calculus which we call inductive situation calculus. We show that ramification rules can be naturally modeled through a nonmonotone iterated inductive definition. Second, we illustrate the use of our recently developed modularity techniques for NMIDlogic in order to translate a theory of the inductive situation calculus into a classical logic theory of Reiter’s situation calculus [3].
A Logic of NonMonotone Inductive Definitions and its Modularity Properties
, 2004
"... Wellknown principles of induction include monotone induction and dierent sorts of nonmonotone induction such as inationary induction, induction over wellordered sets and iterated induction. In this work, we de ne a logic formalizing induction over wellordered sets and monotone and iterated ..."
Abstract

Cited by 33 (24 self)
 Add to MetaCart
Wellknown principles of induction include monotone induction and dierent sorts of nonmonotone induction such as inationary induction, induction over wellordered sets and iterated induction. In this work, we de ne a logic formalizing induction over wellordered sets and monotone and iterated induction. Just as the principle of positive induction has been formalized in FO(LFP), and the principle of inationary induction has been formalized in FO(IFP), this paper formalizes the principle of iterated induction in a new logic for NonMonotone Inductive De nitions (NMIDlogic). The semantics of the logic is strongly inuenced by the wellfounded semantics of logic programming.
Ultimate approximation and its application in nonmonotonic knowledge representation systems
, 2004
"... ..."