Results 1  10
of
44
Automated Termination Analysis for Haskell: From Term Rewriting to Programming Languages
 In Proc. RTA ’06, LNCS
, 2006
"... Abstract. There are many powerful techniques for automated termination analysis of term rewriting. However, up to now they have hardly been used for real programming languages. We present a new approach which permits the application of existing techniques from term rewriting in order to prove termin ..."
Abstract

Cited by 33 (10 self)
 Add to MetaCart
Abstract. There are many powerful techniques for automated termination analysis of term rewriting. However, up to now they have hardly been used for real programming languages. We present a new approach which permits the application of existing techniques from term rewriting in order to prove termination of programs in the functional language Haskell. In particular, we show how termination techniques for ordinary rewriting can be used to handle those features of Haskell which are missing in term rewriting (e.g., lazy evaluation, polymorphic types, and higherorder functions). We implemented our results in the termination prover AProVE and successfully evaluated them on existing Haskelllibraries. 1
General recursion via coinductive types
 Logical Methods in Computer Science
"... Vol. 1 (2:1) 2005, pp. 1–28 ..."
Induction and coinduction in sequent calculus
 Postproceedings of TYPES 2003, number 3085 in LNCS
, 2003
"... Abstract. Proof search has been used to specify a wide range of computation systems. In order to build a framework for reasoning about such specifications, we make use of a sequent calculus involving induction and coinduction. These proof principles are based on a proof theoretic (rather than sett ..."
Abstract

Cited by 23 (8 self)
 Add to MetaCart
Abstract. Proof search has been used to specify a wide range of computation systems. In order to build a framework for reasoning about such specifications, we make use of a sequent calculus involving induction and coinduction. These proof principles are based on a proof theoretic (rather than settheoretic) notion of definition [13, 20, 25, 51]. Definitions are akin to (stratified) logic programs, where the left and right rules for defined atoms allow one to view theories as “closed ” or defining fixed points. The use of definitions makes it possible to reason intensionally about syntax, in particular enforcing free equality via unification. We add in a consistent way rules for pre and post fixed points, thus allowing the user to reason inductively and coinductively about properties of computational system making full use of higherorder abstract syntax. Consistency is guaranteed via cutelimination, where we give the first, to our knowledge, cutelimination procedure in the presence of general inductive and coinductive definitions. 1
The Computability Path Ordering: the End of a Quest
"... Abstract. In this paper, we first briefly survey automated termination proof methods for higherorder calculi. We then concentrate on the higherorder recursive path ordering, for which we provide an improved definition, the Computability Path Ordering. This new definition appears indeed to capture ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
Abstract. In this paper, we first briefly survey automated termination proof methods for higherorder calculi. We then concentrate on the higherorder recursive path ordering, for which we provide an improved definition, the Computability Path Ordering. This new definition appears indeed to capture the essence of computability arguments à la Tait and Girard, therefore explaining the name of the improved ordering. 1
A Unifying Approach to Recursive and Corecursive Definitions
 IN [5
, 2002
"... In type theory based logical frameworks, recursive and corecursive definitions are subject to syntactic restrictions that ensure their termination and productivity. These restrictions however greately decrease the expressive power of the language. In this work we propose a general approach for s ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
In type theory based logical frameworks, recursive and corecursive definitions are subject to syntactic restrictions that ensure their termination and productivity. These restrictions however greately decrease the expressive power of the language. In this work we propose a general approach for systematically defining fixed points for a broad class of well given recursive definition. This approach unifies the ones based on wellfounded order to the ones based on complete metrics and contractive functions, thus allowing for mixed recursive/corecursive definitions.
Generalized Iteration and Coiteration for HigherOrder Nested Datatypes
 PROC. OF FOSSACS 2003
, 2003
"... We solve the problem of extending Bird and Paterson's generalized folds for nested datatypes and its dual to inductive and coinductive constructors of arbitrarily high ranks by appropriately generalizing Mendlerstyle (co)iteration. Characteristically to Mendlerstyle schemes of disciplined (co ..."
Abstract

Cited by 8 (5 self)
 Add to MetaCart
We solve the problem of extending Bird and Paterson's generalized folds for nested datatypes and its dual to inductive and coinductive constructors of arbitrarily high ranks by appropriately generalizing Mendlerstyle (co)iteration. Characteristically to Mendlerstyle schemes of disciplined (co)recursion, the schemes we propose do not rest on notions like positivity or monotonicity of a constructor and facilitate programming in a natural and elegant style close to programming with the customary letrec construct, where the typings of the schemes, however, guarantee termination. For rank 2, a smoothened version of Bird and Paterson's generalized folds and its dual are achieved; for rank 1, the schemes instantiate to Mendler's original (re)formulation of iteration and coiteration. Several examples demonstrate the power of the approach. Strong normalization of our proposed extension of system F of higherorder parametric polymorphism is proven by a reductionpreserving embedding into pure F .
Implementing a normalizer using sized heterogeneous types
 In Workshop on Mathematically Structured Functional Programming, MSFP
, 2006
"... In the simplytyped lambdacalculus, a hereditary substitution replaces a free variable in a normal form r by another normal form s of type a, removing freshly created redexes on the fly. It can be defined by lexicographic induction on a and r, thus, giving rise to a structurally recursive normalize ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
In the simplytyped lambdacalculus, a hereditary substitution replaces a free variable in a normal form r by another normal form s of type a, removing freshly created redexes on the fly. It can be defined by lexicographic induction on a and r, thus, giving rise to a structurally recursive normalizer for the simplytyped lambdacalculus. We generalize this scheme to simultaneous substitutions, preserving its simple termination argument. We further implement hereditary simultaneous substitutions in a functional programming language with sized heterogeneous inductive types, Fωb, arriving at an interpreter whose termination can be tracked by the type system of its host programming language.
Beating the Productivity Checker Using Embedded Languages
"... Abstract. Some total languages, like Agda and Coq, allow the use of guarded corecursion to construct infinite values and proofs. Guarded corecursion is a form of recursion in which arbitrary recursive calls are allowed, as long as they are guarded by a coinductive constructor. Guardedness ensures th ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
Abstract. Some total languages, like Agda and Coq, allow the use of guarded corecursion to construct infinite values and proofs. Guarded corecursion is a form of recursion in which arbitrary recursive calls are allowed, as long as they are guarded by a coinductive constructor. Guardedness ensures that programs are productive, i.e. that every finite prefix of an infinite value can be computed in finite time. However, many productive programs are not guarded, and it can be nontrivial to put them in guarded form. This paper gives a method for turning a productive program into a guarded program. The method amounts to defining a problemspecific language as a data type, writing the program in the problemspecific language, and writing a guarded interpreter for this language. 1
Copatterns Programming Infinite Structures by Observations
"... Inductive datatypes provide mechanisms to define finite data such as finite lists and trees via constructors and allow programmers to analyze and manipulate finite data via pattern matching. In this paper, we develop a dual approach for working with infinite data structures such as streams. Infinite ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
Inductive datatypes provide mechanisms to define finite data such as finite lists and trees via constructors and allow programmers to analyze and manipulate finite data via pattern matching. In this paper, we develop a dual approach for working with infinite data structures such as streams. Infinite data inhabits coinductive datatypes which denote greatest fixpoints. Unlike finite data which is defined by constructors we define infinite data by observations. Dual to pattern matching, a tool for analyzing finite data, we develop the concept of copattern matching, which allows us to synthesize infinite data. This leads to a symmetric language design where pattern matching on finite and infinite data can be mixed. We present a core language for programming with infinite structures by observations together with its operational semantics based on (co)pattern matching and describe coverage of copatterns. Our language naturally supports both callbyname and callbyvalue interpretations and can be seamlessly integrated into existing languages like Haskell and ML. We prove type soundness for our language and sketch how copatterns open new directions for solving problems in the interaction of coinductive and dependent types. Categories and Subject Descriptors D.3.3 [Programming Languages]: Language Constructs and Features—Data types and structures,
Typebased termination of generic programs
 Science of Computer Programming
, 2007
"... Instances of a polytypic or generic program for a concrete recursive type often exhibit a recursion scheme that is derived from the recursion scheme of the instantiation type. In practice, the programs obtained from a generic program are usually terminating, but the proof of termination cannot be ca ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Instances of a polytypic or generic program for a concrete recursive type often exhibit a recursion scheme that is derived from the recursion scheme of the instantiation type. In practice, the programs obtained from a generic program are usually terminating, but the proof of termination cannot be carried out with traditional methods as term orderings alone, since termination often crucially relies on the program type. In this article, it is demonstrated that typebased termination using sized types handles such programs very well. A framework for sized polytypic programming is developed which ensures (typebased) termination of all instances. 1