Results 11  20
of
793
Learning with Labeled and Unlabeled Data
, 2001
"... In this paper, on the one hand, we aim to give a review on literature dealing with the problem of supervised learning aided by additional unlabeled data. On the other hand, being a part of the author's first year PhD report, the paper serves as a frame to bundle related work by the author as we ..."
Abstract

Cited by 197 (3 self)
 Add to MetaCart
In this paper, on the one hand, we aim to give a review on literature dealing with the problem of supervised learning aided by additional unlabeled data. On the other hand, being a part of the author's first year PhD report, the paper serves as a frame to bundle related work by the author as well as numerous suggestions for potential future work. Therefore, this work contains more speculative and partly subjective material than the reader might expect from a literature review. We give a rigorous definition of the problem and relate it to supervised and unsupervised learning. The crucial role of prior knowledge is put forward, and we discuss the important notion of inputdependent regularization. We postulate a number of baseline methods, being algorithms or algorithmic schemes which can more or less straightforwardly be applied to the problem, without the need for genuinely new concepts. However, some of them might serve as basis for a genuine method. In the literature revi...
Learning hierarchical models of scenes, objects, and parts
 In IEEE Intl. Conf. on Computer Vision
, 2005
"... We describe a hierarchical probabilistic model for the detection and recognition of objects in cluttered, natural scenes. The model is based on a set of parts which describe the expected appearance and position, in an object centered coordinate frame, of features detected by a lowlevel interest ope ..."
Abstract

Cited by 188 (14 self)
 Add to MetaCart
(Show Context)
We describe a hierarchical probabilistic model for the detection and recognition of objects in cluttered, natural scenes. The model is based on a set of parts which describe the expected appearance and position, in an object centered coordinate frame, of features detected by a lowlevel interest operator. Each object category then has its own distribution over these parts, which are shared between objects. We learn the parameters of this model via a Gibbs sampler which uses the graphical model’s structure to analytically average over many parameters. Applied to a database of images of isolated objects, the sharing of parts among objects improves detection accuracy when few training examples are available. We also extend this hierarchical framework to scenes containing multiple objects. 1.
Probability product kernels
 Journal of Machine Learning Research
, 2004
"... The advantages of discriminative learning algorithms and kernel machines are combined with generative modeling using a novel kernel between distributions. In the probability product kernel, data points in the input space are mapped to distributions over the sample space and a general inner product i ..."
Abstract

Cited by 179 (9 self)
 Add to MetaCart
(Show Context)
The advantages of discriminative learning algorithms and kernel machines are combined with generative modeling using a novel kernel between distributions. In the probability product kernel, data points in the input space are mapped to distributions over the sample space and a general inner product is then evaluated as the integral of the product of pairs of distributions. The kernel is straightforward to evaluate for all exponential family models such as multinomials and Gaussians and yields interesting nonlinear kernels. Furthermore, the kernel is computable in closed form for latent distributions such as mixture models, hidden Markov models and linear dynamical systems. For intractable models, such as switching linear dynamical systems, structured meanfield approximations can be brought to bear on the kernel evaluation. For general distributions, even if an analytic expression for the kernel is not feasible, we show a straightforward sampling method to evaluate it. Thus, the kernel permits discriminative learning methods, including support vector machines, to exploit the properties, metrics and invariances of the generative models we infer from each datum. Experiments are shown using multinomial models for text, hidden Markov models for biological data sets and linear dynamical systems for time series data.
Topics in semantic representation
 Psychological Review
, 2007
"... Accounts of language processing have suggested that it requires retrieving concepts from memory in response to an ongoing stream of information. This can be facilitated by inferring the gist of a sentence, conversation, or document, and using that computational problem underlying the extraction and ..."
Abstract

Cited by 173 (14 self)
 Add to MetaCart
(Show Context)
Accounts of language processing have suggested that it requires retrieving concepts from memory in response to an ongoing stream of information. This can be facilitated by inferring the gist of a sentence, conversation, or document, and using that computational problem underlying the extraction and use of gist, formulating this problem as a rational statistical inference. This leads us to a novel approach to semantic representation in which word meanings are represented in terms of a set of probabilistic topics. The topic model performs well in predicting word association and the effects of semantic association and ambiguity on a variety of language processing and memory tasks. It also provides a foundation for developing more richly structured statistical models of language, as the generative process assumed in the topic model can easily be extended to incorporate other kinds of semantic and syntactic structure. Many aspects of perception and cognition can be understood by considering the computational problem that is addressed by a particular human capacity (Andersion, 1990; Marr, 1982). Perceptual capacities such as identifying shape from shading (Freeman, 1994), motion perception
Multiresolution markov models for signal and image processing
 Proceedings of the IEEE
, 2002
"... This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coheren ..."
Abstract

Cited by 154 (19 self)
 Add to MetaCart
(Show Context)
This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coherent picture of this framework. A second goal is to describe how this topic fits into the even larger field of MR methods and concepts–in particular making ties to topics such as wavelets and multigrid methods. A third is to provide several alternate viewpoints for this body of work, as the methods and concepts we describe intersect with a number of other fields. The principle focus of our presentation is the class of MR Markov processes defined on pyramidally organized trees. The attractiveness of these models stems from both the very efficient algorithms they admit and their expressive power and broad applicability. We show how a variety of methods and models relate to this framework including models for selfsimilar and 1/f processes. We also illustrate how these methods have been used in practice. We discuss the construction of MR models on trees and show how questions that arise in this context make contact with wavelets, state space modeling of time series, system and parameter identification, and hidden
Profiling internet backbone traffic: Behavior models and applications
 In ACM Sigcomm
, 2005
"... Abstract — Recent spates of cyberattacks and frequent emergence of applications affecting Internet traffic dynamics have made it imperative to develop effective techniques that can extract, and make sense of, significant communication patterns from Internet traffic data for use in network operation ..."
Abstract

Cited by 147 (12 self)
 Add to MetaCart
(Show Context)
Abstract — Recent spates of cyberattacks and frequent emergence of applications affecting Internet traffic dynamics have made it imperative to develop effective techniques that can extract, and make sense of, significant communication patterns from Internet traffic data for use in network operations and security management. In this paper, we present a general methodology for building comprehensive behavior profiles of Internet backbone traffic in terms of communication patterns of endhosts and services. Relying on data mining and informationtheoretic techniques, the methodology consists of significant cluster extraction, automatic behavior classification and structural modelling for indepth interpretive analyses. We validate our methodology using data sets from the core of the Internet. Our results demonstrate that it indeed can identify common traffic profiles as well as anomalous behavior patterns that are of interest to network operators and security analysts. I.
Thin Junction Tree Filters for Simultaneous Localization and Mapping
 In Intl. Joint Conf. on Artificial Intelligence (IJCAI
, 2003
"... Simultaneous Localization and Mapping (SLAM) is a fundamental problem in mobile robotics: while a robot navigates in an unknown environment, it must incrementally build a map of its surroundings and localize itself within that map. Traditional approaches to the problem are based upon Kalman filters, ..."
Abstract

Cited by 133 (1 self)
 Add to MetaCart
Simultaneous Localization and Mapping (SLAM) is a fundamental problem in mobile robotics: while a robot navigates in an unknown environment, it must incrementally build a map of its surroundings and localize itself within that map. Traditional approaches to the problem are based upon Kalman filters, but suffer from complexity issues: the size of the belief state and the time complexity of the filtering operation grow quadratically in the size of the map. This paper presents a filtering technique that maintains a tractable approximation of the filtered belief state as a thin junction tree. The junction tree grows under measurement and motion updates and is periodically "thinned" to remain tractable via efficient maximum likelihood projections. When applied to the SLAM problem, these thin junction tree filters have a linearspace belief state representation, and use a lineartime filtering operation. Further approximation can yield a constanttime filtering operation, at the expense of delaying the incorporation of observations into the majority of the map. Experiments on a suite of SLAM problems validate the approach.
TreeBased Reparameterization Framework for Analysis of Belief Propagation and Related Algorithms
, 2001
"... We present a treebased reparameterization framework that provides a new conceptual view of a large class of algorithms for computing approximate marginals in graphs with cycles. This class includes the belief propagation or sumproduct algorithm [39, 36], as well as a rich set of variations and ext ..."
Abstract

Cited by 125 (23 self)
 Add to MetaCart
(Show Context)
We present a treebased reparameterization framework that provides a new conceptual view of a large class of algorithms for computing approximate marginals in graphs with cycles. This class includes the belief propagation or sumproduct algorithm [39, 36], as well as a rich set of variations and extensions of belief propagation. Algorithms in this class can be formulated as a sequence of reparameterization updates, each of which entails refactorizing a portion of the distribution corresponding to an acyclic subgraph (i.e., a tree). The ultimate goal is to obtain an alternative but equivalent factorization using functions that represent (exact or approximate) marginal distributions on cliques of the graph. Our framework highlights an important property of BP and the entire class of reparameterization algorithms: the distribution on the full graph is not changed. The perspective of treebased updates gives rise to a simple and intuitive characterization of the fixed points in terms of tree consistency. We develop interpretations of these results in terms of information geometry. The invariance of the distribution, in conjunction with the fixed point characterization, enables us to derive an exact relation between the exact marginals on an arbitrary graph with cycles, and the approximations provided by belief propagation, and more broadly, any algorithm that minimizes the Bethe free energy. We also develop bounds on this approximation error, which illuminate the conditions that govern their accuracy. Finally, we show how the reparameterization perspective extends naturally to more structured approximations (e.g., Kikuchi and variants [52, 37]) that operate over higher order cliques.
The nested chinese restaurant process and bayesian inference of topic hierarchies
, 2007
"... We present the nested Chinese restaurant process (nCRP), a stochastic process which assigns probability distributions to infinitelydeep, infinitelybranching trees. We show how this stochastic process can be used as a prior distribution in a Bayesian nonparametric model of document collections. Spe ..."
Abstract

Cited by 123 (15 self)
 Add to MetaCart
(Show Context)
We present the nested Chinese restaurant process (nCRP), a stochastic process which assigns probability distributions to infinitelydeep, infinitelybranching trees. We show how this stochastic process can be used as a prior distribution in a Bayesian nonparametric model of document collections. Specifically, we present an application to information retrieval in which documents are modeled as paths down a random tree, and the preferential attachment dynamics of the nCRP leads to clustering of documents according to sharing of topics at multiple levels of abstraction. Given a corpus of documents, a posterior inference algorithm finds an approximation to a posterior distribution over trees, topics and allocations of words to levels of the tree. We demonstrate this algorithm on collections of scientific abstracts from several journals. This model exemplifies a recent trend in statistical machine learning—the use of Bayesian nonparametric methods to infer distributions on flexible data structures.
Scaling learning algorithms towards AI
 TO APPEAR IN “LARGESCALE KERNEL MACHINES”
, 2007
"... One longterm goal of machine learning research is to produce methods that are applicable to highly complex tasks, such as perception (vision, audition), reasoning, intelligent control, and other artificially intelligent behaviors. We argue that in order to progress toward this goal, the Machine Lea ..."
Abstract

Cited by 120 (23 self)
 Add to MetaCart
(Show Context)
One longterm goal of machine learning research is to produce methods that are applicable to highly complex tasks, such as perception (vision, audition), reasoning, intelligent control, and other artificially intelligent behaviors. We argue that in order to progress toward this goal, the Machine Learning community must endeavor to discover algorithms that can learn highly complex functions, with minimal need for prior knowledge, and with minimal human intervention. We present mathematical and empirical evidence suggesting that many popular approaches to nonparametric learning, particularly kernel methods, are fundamentally limited in their ability to learn complex highdimensional functions. Our analysis focuses on two problems. First, kernel machines are shallow architectures, in which one large layer of simple template matchers is followed by a single layer of trainable coefficients. We argue that shallow architectures can be very inefficient in terms of required number of computational elements and examples. Second, we analyze a limitation of kernel machines with a local kernel, linked to the curse of dimensionality, that applies to supervised, unsupervised (manifold learning) and semisupervised kernel machines. Using empirical results on invariant image recognition tasks, kernel methods are compared with deep architectures, in and higherlevel representations. We argue that deep architectures have the potential to generalize in nonlocal ways, i.e., beyond immediate neighbors, and that this is crucial in order to make progress on the kind of complex tasks required for artificial intelligence.