Results 1  10
of
299
Using Bayesian networks to analyze expression data
 Journal of Computational Biology
, 2000
"... DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a “snapshot ” of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key biologica ..."
Abstract

Cited by 1088 (17 self)
 Add to MetaCart
DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a “snapshot ” of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key biological features of cellular systems. In this paper, we propose a new framework for discovering interactions between genes based on multiple expression measurements. This framework builds on the use of Bayesian networks for representing statistical dependencies. A Bayesian network is a graphbased model of joint multivariate probability distributions that captures properties of conditional independence between variables. Such models are attractive for their ability to describe complex stochastic processes and because they provide a clear methodology for learning from (noisy) observations. We start by showing how Bayesian networks can describe interactions between genes. We then describe a method for recovering gene interactions from microarray data using tools for learning Bayesian networks. Finally, we demonstrate this method on the S. cerevisiae cellcycle measurements of Spellman et al. (1998). Key words: gene expression, microarrays, Bayesian methods. 1.
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 770 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
The Bayes Net Toolbox for MATLAB
 Computing Science and Statistics
, 2001
"... The Bayes Net Toolbox (BNT) is an opensource Matlab package for directed graphical models. BNT supports many kinds of nodes (probability distributions), exact and approximate inference, parameter and structure learning, and static and dynamic models. BNT is widely used in teaching and research: the ..."
Abstract

Cited by 250 (1 self)
 Add to MetaCart
(Show Context)
The Bayes Net Toolbox (BNT) is an opensource Matlab package for directed graphical models. BNT supports many kinds of nodes (probability distributions), exact and approximate inference, parameter and structure learning, and static and dynamic models. BNT is widely used in teaching and research: the web page has received over 28,000 hits since May 2000. In this paper, we discuss a broad spectrum of issues related to graphical models (directed and undirected), and describe, at a highlevel, how BNT was designed to cope with them all. We also compare BNT to other software packages for graphical models, and to the nascent OpenBayes effort.
An Empirical Bayes Approach to Inferring LargeScale Gene Association Networks
 BIOINFORMATICS
, 2004
"... Motivation: Genetic networks are often described statistically by graphical models (e.g. Bayesian networks). However, inferring the network structure offers a serious challenge in microarray analysis where the sample size is small compared to the number of considered genes. This renders many standar ..."
Abstract

Cited by 237 (6 self)
 Add to MetaCart
Motivation: Genetic networks are often described statistically by graphical models (e.g. Bayesian networks). However, inferring the network structure offers a serious challenge in microarray analysis where the sample size is small compared to the number of considered genes. This renders many standard algorithms for graphical models inapplicable, and inferring genetic networks an “illposed” inverse problem. Methods: We introduce a novel framework for smallsample inference of graphical models from gene expression data. Specifically, we focus on socalled graphical Gaussian models (GGMs) that are now frequently used to describe gene association networks and to detect conditionally dependent genes. Our new approach is based on (i) improved (regularized) smallsample point estimates of partial correlation, (ii) an exact test of edge inclusion with adaptive estimation of the degree of freedom, and (iii) a heuristic network search based on false discovery rate multiple testing. Steps (ii) and (iii) correspond to an empirical Bayes estimate of the network topology. Results: Using computer simulations we investigate the sensitivity (power) and specificity (true negative rate) of the proposed framework to estimate GGMs from microarray data. This shows that it is possible to recover the true network topology with high accuracy even for smallsample data sets. Subsequently, we analyze gene expression data from a breast cancer tumor study and illustrate our approach by inferring a corresponding largescale gene association network for 3,883 genes. Availability: The authors have implemented the approach in the R package “GeneTS ” that is freely available from
Structure and Strength in Causal Induction
"... We present a framework for the rational analysis of elemental causal induction – learning about the existence of a relationship between a single cause and effect – based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the diffe ..."
Abstract

Cited by 156 (36 self)
 Add to MetaCart
We present a framework for the rational analysis of elemental causal induction – learning about the existence of a relationship between a single cause and effect – based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship exists and asking how strong that causal relationship might be. We show that two leading rational models of elemental causal induction, ∆P and causal power, both estimate causal strength, and introduce a new rational model, causal support, that assesses causal structure. Causal support predicts several key phenomena of causal induction that cannot be accounted for by other rational models, which we explore through a series of experiments. These phenomena include the complex interaction between ∆P and the baserate probability of the effect in the absence of the cause, sample size effects, inferences from incomplete contingency tables, and causal learning from rates. Causal support also provides a better account of a number of existing datasets than either ∆P or causal power.
Inferring Networks of Diffusion and Influence
, 2010
"... Information diffusion and virus propagation are fundamental processes talking place in networks. While it is often possible to directly observe when nodes become infected, observing individual transmissions (i.e., who infects whom or who influences whom) is typically very difficult. Furthermore, in ..."
Abstract

Cited by 116 (13 self)
 Add to MetaCart
Information diffusion and virus propagation are fundamental processes talking place in networks. While it is often possible to directly observe when nodes become infected, observing individual transmissions (i.e., who infects whom or who influences whom) is typically very difficult. Furthermore, in many applications, the underlying network over which the diffusions and propagations spread is actually unobserved. We tackle these challenges by developing a method for tracing paths of diffusion and influence through networks and inferring the networks over which contagions propagate. Given the times when nodes adopt pieces of information or become infected, we identify the optimal network that best explains the observed infection times. Since the optimization problem is NPhard to solve exactly, we develop an efficient approximation algorithm that scales to large datasets and in practice gives provably nearoptimal performance. We demonstrate the effectiveness of our approach by tracing information cascades in a set of 170 million blogs and news articles over a one year period to infer how information flows through the online media space. We find that the diffusion network of news tends to have a coreperiphery structure with a small set of core media sites that diffuse information to the rest of the Web. These sites tend to have stable circles of influence with more general news media sites acting as connectors between them.
Exact Bayesian structure discovery in Bayesian networks
 J. of Machine Learning Research
, 2004
"... We consider a Bayesian method for learning the Bayesian network structure from complete data. Recently, Koivisto and Sood (2004) presented an algorithm that for any single edge computes its marginal posterior probability in O(n2 n) time, where n is the number of attributes; the number of parents per ..."
Abstract

Cited by 115 (12 self)
 Add to MetaCart
We consider a Bayesian method for learning the Bayesian network structure from complete data. Recently, Koivisto and Sood (2004) presented an algorithm that for any single edge computes its marginal posterior probability in O(n2 n) time, where n is the number of attributes; the number of parents per attribute is bounded by a constant. In this paper we show that the posterior probabilities for all the n(n−1) potential edges can be computed in O(n2 n) total time. This result is achieved by a forward–backward technique and fast Möbius transform algorithms, which are of independent interest. The resulting speedup by a factor of about n 2 allows us to experimentally study the statistical power of learning moderatesize networks. We report results from a simulation study that covers data sets with 20 to 10,000 records over 5 to 25 discrete attributes. 1
Understanding videos, constructing plots learning a visually grounded storyline model from annotated videos
 In CVPR
, 2009
"... Analyzing videos of human activities involves not only recognizing actions (typically based on their appearances), but also determining the story/plot of the video. The storyline of a video describes causal relationships between actions. Beyond recognition of individual actions, discovering causal ..."
Abstract

Cited by 99 (8 self)
 Add to MetaCart
(Show Context)
Analyzing videos of human activities involves not only recognizing actions (typically based on their appearances), but also determining the story/plot of the video. The storyline of a video describes causal relationships between actions. Beyond recognition of individual actions, discovering causal relationships helps to better understand the semantic meaning of the activities. We present an approach to learn a visually grounded storyline model of videos directly from weakly labeled data. The storyline model is represented as an ANDOR graph, a structure that can compactly encode storyline variation across videos. The edges in the ANDOR graph correspond to causal relationships which are represented in terms of spatiotemporal constraints. We formulate an Integer Programming framework for action recognition and storyline extraction using the storyline model and visual groundings learned from training data. 1.
Unsupervised learning of human motion
 IEEE Trans. PAMI
, 2003
"... Abstract—An unsupervised learning algorithm that can obtain a probabilistic model of an object composed of a collection of parts (a moving human body in our examples) automatically from unlabeled training data is presented. The training data include both useful “foreground ” features as well as feat ..."
Abstract

Cited by 85 (1 self)
 Add to MetaCart
(Show Context)
Abstract—An unsupervised learning algorithm that can obtain a probabilistic model of an object composed of a collection of parts (a moving human body in our examples) automatically from unlabeled training data is presented. The training data include both useful “foreground ” features as well as features that arise from irrelevant background clutter—the correspondence between parts and detected features is unknown. The joint probability density function of the parts is represented by a mixture of decomposable triangulated graphs which allow for fast detection. To learn the model structure as well as model parameters, an EMlike algorithm is developed where the labeling of the data (part assignments) is treated as hidden variables. The unsupervised learning technique is not limited to decomposable triangulated graphs. The efficiency and effectiveness of our algorithm is demonstrated by applying it to generate models of human motion automatically from unlabeled image sequences, and testing the learned models on a variety of sequences. Index Terms—Unsupervised learning, human motion, decomposable triangulated graph, probabilistic models, greedy search, EM algorithm, mixture models. 1
Orderingbased search: A simple and effective algorithm for learning Bayesian networks
 In UAI
, 2005
"... One of the basic tasks for Bayesian networks (BNs) is that of learning a network structure from data. The BNlearning problem is NPhard, so the standard solution is heuristic search. Many approaches have been proposed for this task, but only a very small number outperform the baseline of greedy hill ..."
Abstract

Cited by 81 (0 self)
 Add to MetaCart
One of the basic tasks for Bayesian networks (BNs) is that of learning a network structure from data. The BNlearning problem is NPhard, so the standard solution is heuristic search. Many approaches have been proposed for this task, but only a very small number outperform the baseline of greedy hillclimbing with tabu lists; moreover, many of the proposed algorithms are quite complex and hard to implement. In this paper, we propose a very simple and easytoimplement method for addressing this task. Our approach is based on the wellknown fact that the best network (of bounded indegree) consistent with a given node ordering can be found very efficiently. We therefore propose a search not over the space of structures, but over the space of orderings, selecting for each ordering the best network consistent with it. This search space is much smaller, makes more global search steps, has a lower branching factor, and avoids costly acyclicity checks. We present results for this algorithm on both synthetic and real data sets, evaluating both the score of the network found and in the running time. We show that orderingbased search outperforms the standard baseline, and is competitive with recent algorithms that are much harder to implement. 1