Results 1 
2 of
2
Topological Incompleteness and Order Incompleteness of the Lambda Calculus
 ACM TRANSACTIONS ON COMPUTATIONAL LOGIC
, 2001
"... A model of the untyped lambda calculus induces a lambda theory, i.e., a congruence relation on λterms closed under ff and ficonversion. A semantics (= class of models) of the lambda calculus is incomplete if there exists a lambda theory which is not induced by any model in the semantics. In th ..."
Abstract

Cited by 23 (15 self)
 Add to MetaCart
A model of the untyped lambda calculus induces a lambda theory, i.e., a congruence relation on λterms closed under ff and ficonversion. A semantics (= class of models) of the lambda calculus is incomplete if there exists a lambda theory which is not induced by any model in the semantics. In this paper we introduce a new technique to prove the incompleteness of a wide range of lambda calculus semantics, including the strongly stable one, whose incompleteness had been conjectured by BastoneroGouy [6, 7] and by Berline [9]. The main results of the paper are a topological incompleteness theorem and an order incompleteness theorem. In the first one we show the incompleteness of the lambda calculus semantics given in terms of topological models whose topology satisfies a property of connectedness. In the second one we prove the incompleteness of the class of partially ordered models with finitely many connected components w.r.t. the Alexandroff topology. A further result of the paper is a proof of the completeness of the semantics of the lambda calculus given in terms of topological models whose topology is nontrivial and metrizable.
Towards Lambda Calculus OrderIncompleteness
 Workshop on Böhm theorem: applications to Computer Science Theory (BOTH 2001) Electronics Notes in Theoretical Computer Science
"... After Scott, mathematical models of the typefree lambda calculus are constructed by order theoretic methods and classified into semantics according to the nature of their representable functions. Selinger [47] asked if there is a lambda theory that is not induced by any nontrivially partially orde ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
After Scott, mathematical models of the typefree lambda calculus are constructed by order theoretic methods and classified into semantics according to the nature of their representable functions. Selinger [47] asked if there is a lambda theory that is not induced by any nontrivially partially ordered model (orderincompleteness problem). In terms of Alexandroff topology (the strongest topology whose specialization order is the order of the considered model) the problem of order incompleteness can be also characterized as follows: a lambda theory T is orderincomplete if, and only if, every partially ordered model of T is partitioned by the Alexandroff topology in an infinite number of connected components (= minimal upper and lower sets), each one containing exactly one element of the model. Towards an answer to the orderincompleteness problem, we give a topological proof of the following result: there exists a lambda theory whose partially ordered models are partitioned by the Alexandroff topology in an infinite number of connected components, each one containing at most one term denotation. This result implies the incompleteness of every semantics of lambda calculus given in terms of partially ordered models whose Alexandroff topology has a finite number of connected components (e.g. the Alexandroff topology of the models of the continuous, stable and strongly stable semantics is connected).