Results 1  10
of
459
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 1173 (16 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Multicommodity maxflow mincut theorems and their use in designing approximation algorithms
 J. ACM
, 1999
"... Abstract. In this paper, we establish maxflow mincut theorems for several important classes of multicommodity flow problems. In particular, we show that for any nnode multicommodity flow problem with uniform demands, the maxflow for the problem is within an O(log n) factor of the upper bound imp ..."
Abstract

Cited by 370 (6 self)
 Add to MetaCart
Abstract. In this paper, we establish maxflow mincut theorems for several important classes of multicommodity flow problems. In particular, we show that for any nnode multicommodity flow problem with uniform demands, the maxflow for the problem is within an O(log n) factor of the upper bound implied by the mincut. The result (which is existentially optimal) establishes an important analogue of the famous 1commodity maxflow mincut theorem for problems with multiple commodities. The result also has substantial applications to the field of approximation algorithms. For example, we use the flow result to design the first polynomialtime (polylog ntimesoptimal) approximation algorithms for wellknown NPhard optimization problems such as graph partitioning, mincut linear arrangement, crossing number, VLSI layout, and minimum feedback arc set. Applications of the flow results to path routing problems, network reconfiguration, communication in distributed networks, scientific computing and rapidly mixing Markov chains are also described in the paper.
Faster ShortestPath Algorithms for Planar Graphs
 STOC 94
, 1994
"... We give a lineartime algorithm for singlesource shortest paths in planar graphs with nonnegative edgelengths. Our algorithm also yields a lineartime algorithm for maximum flow in a planar graph with the source and sink on the same face. The previous best algorithms for these problems required\O ..."
Abstract

Cited by 204 (17 self)
 Add to MetaCart
We give a lineartime algorithm for singlesource shortest paths in planar graphs with nonnegative edgelengths. Our algorithm also yields a lineartime algorithm for maximum flow in a planar graph with the source and sink on the same face. The previous best algorithms for these problems required\Omega\Gamma n p log n) time where n is the number of nodes in the input graph. For the case where negative edgelengths are allowed, we give an algorithm requiring O(n 4=3 log nL) time, where L is the absolute value of the most negative length. Previous algorithms for shortest paths with negative edgelengths required \Omega\Gamma n 3=2 ) time. Our shortestpath algorithm yields an O(n 4=3 log n)time algorithm for finding a perfect matching in a planar bipartite graph. A similar improvement is obtained for maximum flow in a directed planar graph.
Spectral Partitioning Works: Planar graphs and finite element meshes
 In IEEE Symposium on Foundations of Computer Science
, 1996
"... Spectral partitioning methods use the Fiedler vectorthe eigenvector of the secondsmallest eigenvalue of the Laplacian matrixto find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extr ..."
Abstract

Cited by 199 (10 self)
 Add to MetaCart
(Show Context)
Spectral partitioning methods use the Fiedler vectorthe eigenvector of the secondsmallest eigenvalue of the Laplacian matrixto find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extremely well. In this paper, we show that spectral partitioning methods work well on boundeddegree planar graphs and finite element meshes the classes of graphs to which they are usually applied. While naive spectral bisection does not necessarily work, we prove that spectral partitioning techniques can be used to produce separators whose ratio of vertices removed to edges cut is O( p n) for boundeddegree planar graphs and twodimensional meshes and O i n 1=d j for wellshaped ddimensional meshes. The heart of our analysis is an upper bound on the secondsmallest eigenvalues of the Laplacian matrices of these graphs. 1. Introduction Spectral partitioning has become one of the mos...
Approximation Algorithms for Disjoint Paths Problems
, 1996
"... The construction of disjoint paths in a network is a basic issue in combinatorial optimization: given a network, and specified pairs of nodes in it, we are interested in finding disjoint paths between as many of these pairs as possible. This leads to a variety of classical NPcomplete problems for w ..."
Abstract

Cited by 166 (0 self)
 Add to MetaCart
The construction of disjoint paths in a network is a basic issue in combinatorial optimization: given a network, and specified pairs of nodes in it, we are interested in finding disjoint paths between as many of these pairs as possible. This leads to a variety of classical NPcomplete problems for which very little is known from the point of view of approximation algorithms. It has recently been brought into focus in work on problems such as VLSI layout and routing in highspeed networks; in these settings, the current lack of understanding of the disjoint paths problem is often an obstacle to the design of practical heuristics.
Square Root SAM: Simultaneous localization and mapping via square root information smoothing
 International Journal of Robotics Reasearch
, 2006
"... Solving the SLAM problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. We investigate smoothing approaches as a viable alternative to extended Kalman filterbased solutions to the problem. In particular, we look at approaches that factorize either th ..."
Abstract

Cited by 144 (39 self)
 Add to MetaCart
(Show Context)
Solving the SLAM problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. We investigate smoothing approaches as a viable alternative to extended Kalman filterbased solutions to the problem. In particular, we look at approaches that factorize either the associated information matrix or the measurement Jacobian into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact, they can be used in either batch or incremental mode, are better equipped to deal with nonlinear process and measurement models, and yield the entire robot trajectory, at lower cost for a large class of SLAM problems. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. In this paper we present the theory underlying these methods, along with an interpretation of factorization in terms of the graphical model associated with the SLAM problem. We present both simulation results and actual SLAM experiments in largescale environments that underscore the potential of these methods as an alternative to EKFbased approaches. 1
Accelerated training of conditional random fields with stochastic gradient methods
 In ICML
, 2006
"... We apply Stochastic MetaDescent (SMD), a stochastic gradient optimization method with gain vector adaptation, to the training of Conditional Random Fields (CRFs). On several large data sets, the resulting optimizer converges to the same quality of solution over an order of magnitude faster than lim ..."
Abstract

Cited by 140 (6 self)
 Add to MetaCart
(Show Context)
We apply Stochastic MetaDescent (SMD), a stochastic gradient optimization method with gain vector adaptation, to the training of Conditional Random Fields (CRFs). On several large data sets, the resulting optimizer converges to the same quality of solution over an order of magnitude faster than limitedmemory BFGS, the leading method reported to date. We report results for both exact and inexact inference techniques. 1.
Highly scalable parallel algorithms for sparse matrix factorization
 IEEE Transactions on Parallel and Distributed Systems
, 1994
"... In this paper, we describe a scalable parallel algorithm for sparse matrix factorization, analyze their performance and scalability, and present experimental results for up to 1024 processors on a Cray T3D parallel computer. Through our analysis and experimental results, we demonstrate that our algo ..."
Abstract

Cited by 133 (28 self)
 Add to MetaCart
(Show Context)
In this paper, we describe a scalable parallel algorithm for sparse matrix factorization, analyze their performance and scalability, and present experimental results for up to 1024 processors on a Cray T3D parallel computer. Through our analysis and experimental results, we demonstrate that our algorithm substantially improves the state of the art in parallel direct solution of sparse linear systems—both in terms of scalability and overall performance. It is a well known fact that dense matrix factorization scales well and can be implemented efficiently on parallel computers. In this paper, we present the first algorithm to factor a wide class of sparse matrices (including those arising from two and threedimensional finite element problems) that is asymptotically as scalable as dense matrix factorization algorithms on a variety of parallel architectures. Our algorithm incurs less communication overhead and is more scalable than any previously known parallel formulation of sparse matrix factorization. Although, in this paper, we discuss Cholesky factorization of symmetric positive definite matrices, the algorithms can be adapted for solving sparse linear least squares problems and for Gaussian elimination of diagonally dominant matrices that are almost symmetric in structure. An implementation of our sparse Cholesky factorization algorithm delivers up to 20 GFlops on a Cray T3D for mediumsize structural engineering and linear programming problems. To the best of our knowledge,
Dynamic and efficient key management for access hierarchies
 In Proceedings of the ACM Conference on Computer and Communications Security
, 2005
"... Hierarchies arise in the context of access control whenever the user population can be modeled as a set of partially ordered classes (represented as a directed graph). A user with access privileges for a class obtains access to objects stored at that class and all descendant classes in the hierarchy ..."
Abstract

Cited by 119 (7 self)
 Add to MetaCart
(Show Context)
Hierarchies arise in the context of access control whenever the user population can be modeled as a set of partially ordered classes (represented as a directed graph). A user with access privileges for a class obtains access to objects stored at that class and all descendant classes in the hierarchy. The problem of key management for such hierarchies then consists of assigning a key to each class in the hierarchy so that keys for descendant classes can be obtained via efficient key derivation. We propose a solution to this problem with the following properties: (1) the space complexity of the public information is the same as that of storing the hierarchy; (2) the private information at a class consists of a single key associated with that class; (3) updates (i.e., revocations and additions) are handled locally in the hierarchy; (4) the scheme is provably secure against collusion; and (5) each node can derive the key of any of its descendant with a number of symmetrickey operations bounded by the length of the path between the nodes. Whereas many previous schemes had some of these properties, ours is the first that satisfies all of them. The security of our scheme is based on pseudorandom functions, without reliance on the Random Oracle Model. 18 Portions of this work were supported by Grants IIS0325345 and CNS06274488 from the