Results 1  10
of
49
A secondorder perceptron algorithm
, 2005
"... Kernelbased linearthreshold algorithms, such as support vector machines and Perceptronlike algorithms, are among the best available techniques for solving pattern classification problems. In this paper, we describe an extension of the classical Perceptron algorithm, called secondorder Perceptr ..."
Abstract

Cited by 59 (21 self)
 Add to MetaCart
Kernelbased linearthreshold algorithms, such as support vector machines and Perceptronlike algorithms, are among the best available techniques for solving pattern classification problems. In this paper, we describe an extension of the classical Perceptron algorithm, called secondorder Perceptron, and analyze its performance within the mistake bound model of online learning. The bound achieved by our algorithm depends on the sensitivity to secondorder data information and is the best known mistake bound for (efficient) kernelbased linearthreshold classifiers to date. This mistake bound, which strictly generalizes the wellknown Perceptron bound, is expressed in terms of the eigenvalues of the empirical data correlation matrix and depends on a parameter controlling the sensitivity of the algorithm to the distribution of these eigenvalues. Since the optimal setting of this parameter is not known a priori, we also analyze two variants of the secondorder Perceptron algorithm: one that adaptively sets the value of the parameter in terms of the number of mistakes made so far, and one that is parameterless, based on pseudoinverses.
Regret minimization under partial monitoring
 MATHEMATICS OF OPERATIONS RESEARCH
, 2004
"... We consider repeated games in which the player, instead of observing the action chosen by the opponent in each game round, receives a feedback generated by the combined choice of the two players. We study Hannan consistent players for this games; that is, randomized playing strategies whose perroun ..."
Abstract

Cited by 33 (7 self)
 Add to MetaCart
We consider repeated games in which the player, instead of observing the action chosen by the opponent in each game round, receives a feedback generated by the combined choice of the two players. We study Hannan consistent players for this games; that is, randomized playing strategies whose perround regret vanishes with probability one as the number n of game rounds goes to infinity. We prove a general lower bound of Ω(n^−1/3) on the convergence rate of the regret, and exhibit a specific strategy that attains this rate on any game for which a Hannan consistent player exists.
Potentialbased Algorithms in Online Prediction and Game Theory
"... In this paper we show that several known algorithms for sequential prediction problems (including Weighted Majority and the quasiadditive family of Grove, Littlestone, and Schuurmans), for playing iterated games (including Freund and Schapire's Hedge and MW, as well as the strategies of Hart and M ..."
Abstract

Cited by 33 (5 self)
 Add to MetaCart
In this paper we show that several known algorithms for sequential prediction problems (including Weighted Majority and the quasiadditive family of Grove, Littlestone, and Schuurmans), for playing iterated games (including Freund and Schapire's Hedge and MW, as well as the strategies of Hart and MasColell), and for boosting (including AdaBoost) are special cases of a general decision strategy based on the notion of potential. By analyzing this strategy we derive known performance bounds, as well as new bounds, as simple corollaries of a single general theorem. Besides offering a new and unified view on a large family of algorithms, we establish a connection between potentialbased analysis in learning and their counterparts independently developed in game theory. By exploiting this connection, we show that certain learning problems are instances of more general gametheoretic problems. In particular, we describe a notion of generalized regret and show its applications in learning theory.
Learning by mirror averaging
 The Annals of Statistics
"... Given a finite collection of estimators or classifiers, we study the problem of model selection type aggregation, that is, we construct a new estimator or classifier, called aggregate, which is nearly as good as the best among them with respect to a given risk criterion. We define our aggregate by a ..."
Abstract

Cited by 30 (2 self)
 Add to MetaCart
Given a finite collection of estimators or classifiers, we study the problem of model selection type aggregation, that is, we construct a new estimator or classifier, called aggregate, which is nearly as good as the best among them with respect to a given risk criterion. We define our aggregate by a simple recursive procedure which solves an auxiliary stochastic linear programming problem related to the original nonlinear one and constitutes a special case of the mirror averaging algorithm. We show that the aggregate satisfies sharp oracle inequalities under some general assumptions. The results are applied to several problems including regression, classification and density estimation. 1. Introduction. Several
Sequential procedures for aggregating arbitrary estimators of a conditional mean
, 2005
"... In this paper we describe and analyze a sequential procedure for aggregating linear combinations of a finite family of regression estimates, with particular attention to linear combinations having coefficients in the generalized simplex. The procedure is based on exponential weighting, and has a com ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
In this paper we describe and analyze a sequential procedure for aggregating linear combinations of a finite family of regression estimates, with particular attention to linear combinations having coefficients in the generalized simplex. The procedure is based on exponential weighting, and has a computationally tractable approximation. Analysis of the procedure is based in part on techniques from the sequential prediction of nonrandom sequences. Here these techniques are applied in a stochastic setting to obtain cumulative loss bounds for the aggregation procedure. From the cumulative loss bounds we derive an oracle inequality for the aggregate estimator for an unbounded response having a suitable moment generating function. The inequality shows that the risk of the aggregate estimator is less than the risk of the best candidate linear combination in the generalized simplex, plus a complexity term that depends on the size of the coefficient set. The inequality readily yields convergence rates for aggregation over the unit simplex that are within logarithmic factors of known minimax bounds. Some preliminary results on model selection are also presented.
Aggregation by exponential weighting and sharp oracle inequalities
"... Abstract. In the present paper, we study the problem of aggregation under the squared loss in the model of regression with deterministic design. We obtain sharp oracle inequalities for convex aggregates defined via exponential weights, under general assumptions on the distribution of errors and on t ..."
Abstract

Cited by 23 (2 self)
 Add to MetaCart
Abstract. In the present paper, we study the problem of aggregation under the squared loss in the model of regression with deterministic design. We obtain sharp oracle inequalities for convex aggregates defined via exponential weights, under general assumptions on the distribution of errors and on the functions to aggregate. We show how these results can be applied to derive a sparsity oracle inequality. 1
Convergence and Loss Bounds for Bayesian Sequence Prediction
 In
, 2003
"... The probability of observing $x_t$ at time $t$, given past observations $x_1...x_{t1}$ can be computed with Bayes rule if the true generating distribution $\mu$ of the sequences $x_1x_2x_3...$ is known. If $\mu$ is unknown, but known to belong to a class $M$ one can base ones prediction on the Baye ..."
Abstract

Cited by 22 (21 self)
 Add to MetaCart
The probability of observing $x_t$ at time $t$, given past observations $x_1...x_{t1}$ can be computed with Bayes rule if the true generating distribution $\mu$ of the sequences $x_1x_2x_3...$ is known. If $\mu$ is unknown, but known to belong to a class $M$ one can base ones prediction on the Bayes mix $\xi$ defined as a weighted sum of distributions $ u\in M$. Various convergence results of the mixture posterior $\xi_t$ to the true posterior $\mu_t$ are presented. In particular a new (elementary) derivation of the convergence $\xi_t/\mu_t\to 1$ is provided, which additionally gives the rate of convergence. A general sequence predictor is allowed to choose an action $y_t$ based on $x_1...x_{t1}$ and receives loss $\ell_{x_t y_t}$ if $x_t$ is the next symbol of the sequence. No assumptions are made on the structure of $\ell$ (apart from being bounded) and $M$. The Bayesoptimal prediction scheme $\Lambda_\xi$ based on mixture $\xi$ and the Bayesoptimal informed prediction scheme $\Lambda_\mu$ are defined and the total loss $L_\xi$ of $\Lambda_\xi$ is bounded in terms of the total loss $L_\mu$ of $\Lambda_\mu$. It is shown that $L_\xi$ is bounded for bounded $L_\mu$ and $L_\xi/L_\mu\to 1$ for $L_\mu\to \infty$. Convergence of the instantaneous losses is also proven.
Universal Linear Least Squares Prediction: Upper and Lower Bounds
 IEEE Trans. Inf. Theory
, 2002
"... Universal linear least squares prediction of realvalued bounded individual sequences in the presence of additive bounded noise is considered. It is shown that there is a sequential predictor observing noisy samples of the sequence to be predicted only, whose loss in terms of the noisefree sequence ..."
Abstract

Cited by 16 (12 self)
 Add to MetaCart
Universal linear least squares prediction of realvalued bounded individual sequences in the presence of additive bounded noise is considered. It is shown that there is a sequential predictor observing noisy samples of the sequence to be predicted only, whose loss in terms of the noisefree sequence is asymptotically as small as that of the best batch predictor out of the class of all linear predictors with knowledge of the entire noisy sequence in advance. Index Terms — Prediction, least squares, linear, noise 1.
General Loss Bounds for Universal Sequence Prediction
, 2001
"... The Bayesian framework is ideally suited for induction problems. The probability of observing $x_k$ at time $k$, given past observations $x_1...x_{k1}$ can be computed with Bayes' rule if the true distribution $\mu$ of the sequences $x_1x_2x_3...$ is known. The problem, however, is that in many cas ..."
Abstract

Cited by 14 (9 self)
 Add to MetaCart
The Bayesian framework is ideally suited for induction problems. The probability of observing $x_k$ at time $k$, given past observations $x_1...x_{k1}$ can be computed with Bayes' rule if the true distribution $\mu$ of the sequences $x_1x_2x_3...$ is known. The problem, however, is that in many cases one does not even have a reasonable estimate of the true distribution. In order to overcome this problem a universal distribution $\xi$ is defined as a weighted sum of distributions $\mu_i\in M$, where $M$ is any countable set of distributions including $\mu$. This is a generalization of Solomonoff induction, in which $M$ is the set of all enumerable semimeasures. Systems which predict $y_k$, given $x_1...x_{k1}$ and which receive loss $l_{x_k y_k}$ if $x_k$ is the true next symbol of the sequence are considered. It is proven that using the universal $\xi$ as a prior is nearly as good as using the unknown true distribution $\mu$. Furthermore, games of chance, defined as a sequence of bets, observations, and rewards are studied. The time needed to reach the winning zone is estimated. Extensions to arbitrary alphabets, partial and delayed prediction, and more active systems are discussed.