Results 1  10
of
174
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 958 (14 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
Proof verification and hardness of approximation problems
 In Proc. 33rd Ann. IEEE Symp. on Found. of Comp. Sci
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 718 (45 self)
 Add to MetaCart
We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probability 1 (i.e., for every choice of its random string). For strings not in the language, the verifier rejects every provided “proof " with probability at least 1/2. Our result builds upon and improves a recent result of Arora and Safra [6] whose verifiers examine a nonconstant number of bits in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include vertex cover, maximum satisfiability, maximum cut, metric TSP, Steiner trees and shortest superstring. We also improve upon the clique hardness results of Feige, Goldwasser, Lovász, Safra and Szegedy [42], and Arora and Safra [6] and shows that there exists a positive ɛ such that approximating the maximum clique size in an Nvertex graph to within a factor of N ɛ is NPhard. 1
Some optimal inapproximability results
, 2002
"... We prove optimal, up to an arbitrary ffl? 0, inapproximability results for MaxEkSat for k * 3, maximizing the number of satisfied linear equations in an overdetermined system of linear equations modulo a prime p and Set Splitting. As a consequence of these results we get improved lower bounds for ..."
Abstract

Cited by 648 (8 self)
 Add to MetaCart
We prove optimal, up to an arbitrary ffl? 0, inapproximability results for MaxEkSat for k * 3, maximizing the number of satisfied linear equations in an overdetermined system of linear equations modulo a prime p and Set Splitting. As a consequence of these results we get improved lower bounds for the efficient approximability of many optimization problems studied previously. In particular, for MaxE2Sat, MaxCut, MaxdiCut, and Vertex cover. Warning: Essentially this paper has been published in JACM and is subject to copyright restrictions. In particular it is for personal use only.
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 421 (57 self)
 Add to MetaCart
We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the function on instances of its choice. First, we establish some connections between property testing and problems in learning theory. Next, we focus on testing graph properties, and devise algorithms to test whether a graph has properties such as being kcolorable or having a aeclique (clique of density ae w.r.t the vertex set). Our graph property testing algorithms are probabilistic and make assertions which are correct with high probability, utilizing only poly(1=ffl) edgequeries into the graph, where ffl is the distance parameter. Moreover, the property testing algorithms can be used to efficiently (i.e., in time linear in the number of vertices) construct partitions of the graph which corre...
A Parallel Repetition Theorem
 SIAM Journal on Computing
, 1998
"... We show that a parallel repetition of any twoprover oneround proof system (MIP(2, 1)) decreases the probability of error at an exponential rate. No constructive bound was previously known. The constant in the exponent (in our analysis) depends only on the original probability of error and on the t ..."
Abstract

Cited by 324 (11 self)
 Add to MetaCart
We show that a parallel repetition of any twoprover oneround proof system (MIP(2, 1)) decreases the probability of error at an exponential rate. No constructive bound was previously known. The constant in the exponent (in our analysis) depends only on the original probability of error and on the total number of possible answers of the two provers. The dependency on the total number of possible answers is logarithmic, which was recently proved to be almost the best possible [U. Feige and O. Verbitsky, Proc. 11th Annual IEEE Conference on Computational Complexity, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 7076].
Zero Knowledge and the Chromatic Number
 Journal of Computer and System Sciences
, 1996
"... We present a new technique, inspired by zeroknowledge proof systems, for proving lower bounds on approximating the chromatic number of a graph. To illustrate this technique we present simple reductions from max3coloring and max3sat, showing that it is hard to approximate the chromatic number wi ..."
Abstract

Cited by 178 (8 self)
 Add to MetaCart
We present a new technique, inspired by zeroknowledge proof systems, for proving lower bounds on approximating the chromatic number of a graph. To illustrate this technique we present simple reductions from max3coloring and max3sat, showing that it is hard to approximate the chromatic number within \Omega\Gamma N ffi ), for some ffi ? 0. We then apply our technique in conjunction with the probabilistically checkable proofs of Hastad, and show that it is hard to approximate the chromatic number to within\Omega\Gamma N 1\Gammaffl ) for any ffl ? 0, assuming NP 6` ZPP. Here, ZPP denotes the class of languages decidable by a random expected polynomialtime algorithm that makes no errors. Our result matches (up to low order terms) the known gap for approximating the size of the largest independent set. Previous O(N ffi ) gaps for approximating the chromatic number (such as those by Lund and Yannakakis, and by Furer) did not match the gap for independent set, and do not extend...
Optimal inapproximability results for MAXCUT and other 2variable CSPs?
, 2005
"... In this paper we show a reduction from the Unique Games problem to the problem of approximating MAXCUT to within a factor of ffGW + ffl, for all ffl> 0; here ffGW ss.878567 denotes the approximation ratio achieved by the GoemansWilliamson algorithm [25]. This implies that if the Unique Games ..."
Abstract

Cited by 173 (24 self)
 Add to MetaCart
In this paper we show a reduction from the Unique Games problem to the problem of approximating MAXCUT to within a factor of ffGW + ffl, for all ffl> 0; here ffGW ss.878567 denotes the approximation ratio achieved by the GoemansWilliamson algorithm [25]. This implies that if the Unique Games
Improved lowdegree testing and its applications
 IN 29TH STOC
, 1997
"... NP = PCP(log n, 1) and related results crucially depend upon the close connection betsveen the probability with which a function passes a low degree test and the distance of this function to the nearest degree d polynomial. In this paper we study a test proposed by Rubinfeld and Sudan [29]. The stro ..."
Abstract

Cited by 145 (18 self)
 Add to MetaCart
NP = PCP(log n, 1) and related results crucially depend upon the close connection betsveen the probability with which a function passes a low degree test and the distance of this function to the nearest degree d polynomial. In this paper we study a test proposed by Rubinfeld and Sudan [29]. The strongest previously known connection for this test states that a function passes the test with probability 6 for some d> 7/8 iff the function has agreement N 6 with a polynomial of degree d. We presenta new, and surprisingly strong,analysiswhich shows thatthepreceding statementis truefor 6<<0.5. The analysis uses a version of Hilbe?l irreducibility, a tool used in the factoring of multivariate polynomials. As a consequence we obtain an alternate construction for the following proof system: A constant prover lround proof system for NP languages in which the verifier uses O(log n) random bits, receives answers of size O(log n) bits, and has an error probability of at most 2 – 10g*‘’. Such a proof system, which implies the NPhardness of approximating Set Cover to within fl(log n) factors, has already been obtained by Raz and Safra [28]. Our result was completed after we heard of their claim. A second consequence of our analysis is a self testerlcorrector for any buggy program that (supposedly) computes a polynomial over a finite field. If the program is correct only on 6 fraction of inputs where 15<<0.5, then the tester/corrector determines J and generates 0(~) randomized programs, such that one of the programs is correct on every input, with high probability.
The Maximum Clique Problem
, 1999
"... Contents 1 Introduction 2 1.1 Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Problem Formulations 4 2.1 Integer Programming Formulations . . . . . . . . . . . . . . . . . . . 5 2.2 Continuous Formulations . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Computation ..."
Abstract

Cited by 140 (20 self)
 Add to MetaCart
Contents 1 Introduction 2 1.1 Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Problem Formulations 4 2.1 Integer Programming Formulations . . . . . . . . . . . . . . . . . . . 5 2.2 Continuous Formulations . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Computational Complexity 12 4 Bounds and Estimates 15 5 Exact Algorithms 19 5.1 Enumerative Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2 Exact Algorithms for the Unweighted Case . . . . . . . . . . . . . . 21 5.3 Exact Algorithms for the Weighted Case . . . . . . . . . . . . . . . . 25 6 Heuristics 27 6.1 Sequential Greedy Heuristics . . . . . . . . . . . . . . . . . . . . . . 28 6.2 Local Search Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.3 Advanced Search Heuristics . . . . . . . . . . . . . . . . . . . . . . . 30 6.3.1 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . 30 6.3.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . .
THE PRIMALDUAL METHOD FOR APPROXIMATION ALGORITHMS AND ITS APPLICATION TO NETWORK DESIGN PROBLEMS
"... The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent researc ..."
Abstract

Cited by 123 (7 self)
 Add to MetaCart
The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent research applying the primaldual method to problems in network design.