Results 1  10
of
109
Graph drawing by stress majorization
 GRAPH DRAWING
, 2004
"... One of the most popular graph drawing methods is based of achieving graphtheoretic target ditsances. This method was used by Kamada and Kawai [15], who formulated it as an energy optimization problem. Their energy is known in the multidimensional scaling (MDS) community as the stress function. In th ..."
Abstract

Cited by 95 (13 self)
 Add to MetaCart
(Show Context)
One of the most popular graph drawing methods is based of achieving graphtheoretic target ditsances. This method was used by Kamada and Kawai [15], who formulated it as an energy optimization problem. Their energy is known in the multidimensional scaling (MDS) community as the stress function. In this work, we show how to draw graphs by stress majorization, adapting a technique known in the MDS community for more than two decades. It appears that majorization has advantages over the technique of Kamada and Kawai in running time and stability. We also present a few extensions to the basic energy model which can improve layout quality and computation speed in practice. Majorizationbased optimization is essential to these extensions.
A Fast MultiScale Method for Drawing Large Graphs
 JOURNAL OF GRAPH ALGORITHMS AND APPLICATIONS
, 2002
"... We present a multiscale layout algorithm for the aesthetic drawing of undirected graphs with straightline edges. The algorithm is extremely fast, and is capable of drawing graphs that are substantially larger than those we have encountered in prior work. For example, the paper contains a drawi ..."
Abstract

Cited by 92 (10 self)
 Add to MetaCart
We present a multiscale layout algorithm for the aesthetic drawing of undirected graphs with straightline edges. The algorithm is extremely fast, and is capable of drawing graphs that are substantially larger than those we have encountered in prior work. For example, the paper contains a drawing of a graph with over 15,000 vertices. Also we achieve "nice" drawings of 1000 vertex graphs in about 1 second. The proposed algorithm embodies a new multiscale scheme for drawing graphs, which was motivated by the earlier multiscale algorithm of Hadany and Harel [HH99]. In principle, it could significantly improve the speed of essentially any forcedirected method (regardless of that method's ability of drawing weighted graphs or the continuity of its costfunction).
Graph Drawing by HighDimensional Embedding
 In GD02, LNCS
, 2002
"... We present a novel approach to the aesthetic drawing of undirected graphs. The method has two phases: first embed the graph in a very high dimension and then project it into the 2D plane using PCA. Experiments we have carried out show the ability of the method to draw graphs of 10 nodes in few seco ..."
Abstract

Cited by 73 (10 self)
 Add to MetaCart
(Show Context)
We present a novel approach to the aesthetic drawing of undirected graphs. The method has two phases: first embed the graph in a very high dimension and then project it into the 2D plane using PCA. Experiments we have carried out show the ability of the method to draw graphs of 10 nodes in few seconds. The new method appears to have several advantages over classical methods, including a significantly better running time, a useful inherent capability to exhibit the graph in various dimensions, and an effective means for interactive exploration of large graphs.
ACE: A Fast Multiscale Eigenvector Computation for Drawing Huge Graphs
, 2002
"... We present an extremely fast graph drawing algorithm for very large graphs, which we term ACE (for Algebraic multigrid Computation of Eigenvectors). ACE finds an optimal drawing by minimizing a quadratic energy function due to Hall, using a novel algebraic multigrid technique. The algorithm exhibits ..."
Abstract

Cited by 73 (13 self)
 Add to MetaCart
We present an extremely fast graph drawing algorithm for very large graphs, which we term ACE (for Algebraic multigrid Computation of Eigenvectors). ACE finds an optimal drawing by minimizing a quadratic energy function due to Hall, using a novel algebraic multigrid technique. The algorithm exhibits an improvement of something like two orders of magnitude over the fastest algorithms we are aware of; it draws graphs of a million nodes in less than a minute. Moreover, the algorithm can deal with more general entities, such as graphs with masses and negative weights (to be defined in the text), and it appears to be applicable outside of graph drawing too.
Topological fisheye views for visualizing large graphs
 IEEE Transactions on Visualization and Computer Graphics
"... Graph drawing is a basic visualization tool. For graphs of up to hundreds of nodes and edges, there are many effective techniques available. At greater scale, data density and occlusion problems often negate its effectiveness. Conventional panandzoom, and multiscale and geometric fisheye views are ..."
Abstract

Cited by 65 (2 self)
 Add to MetaCart
(Show Context)
Graph drawing is a basic visualization tool. For graphs of up to hundreds of nodes and edges, there are many effective techniques available. At greater scale, data density and occlusion problems often negate its effectiveness. Conventional panandzoom, and multiscale and geometric fisheye views are not fully satisfactory solutions to this problem. As an alternative, we describe a topological zooming method. It is based on the precomputation of a hierarchy of coarsened graphs, which are combined onthefly into renderings with the level of detail dependent on the distance from one or more foci. We also discuss a related distortion method that allows our technique to achieve constant information density displays.
An Energy Model for Visual Graph Clustering
 Proceedings of the 11th International Symposium on Graph Drawing (GD 2003), LNCS 2912
, 2003
"... We introduce an energy model whose minimum energy drawings reveal the clusters of the drawn graph. Here a cluster is a set of nodes with many internal edges and few edges to nodes outside the set. The drawings of the bestknown force and energy models do not clearly show clusters for graphs whose ..."
Abstract

Cited by 60 (4 self)
 Add to MetaCart
(Show Context)
We introduce an energy model whose minimum energy drawings reveal the clusters of the drawn graph. Here a cluster is a set of nodes with many internal edges and few edges to nodes outside the set. The drawings of the bestknown force and energy models do not clearly show clusters for graphs whose diameter is small relative to the number of nodes. We formally characterize the minimum energy drawings of our energy model. This characterization shows in what sense the drawings separate clusters, and how the distance of separated clusters to the other nodes can be interpreted.
TopoLayout: Multilevel graph layout by topological features
 IEEE TRANS. VISUALIZATION AND COMPUTER GRAPHICS
, 2007
"... We describe TopoLayout, a featurebased,
multilevel algorithm that draws undirected graphs based on the topological features they contain. Topological features are detected recursively inside the graph, and their subgraphs are collapsed into single nodes, forming a graph hierarchy. Each feature is ..."
Abstract

Cited by 58 (6 self)
 Add to MetaCart
(Show Context)
We describe TopoLayout, a featurebased,
multilevel algorithm that draws undirected graphs based on the topological features they contain. Topological features are detected recursively inside the graph, and their subgraphs are collapsed into single nodes, forming a graph hierarchy. Each feature is drawn with an algorithm tuned for its topology. As would be expected from a featurebased approach, the runtime and visual quality of TopoLayout depends on the number and types of topological features present in the graph. We show experimental results comparing speed and visual quality for TopoLayout against four other multilevel algorithms on a variety of datasets with a range of connectivities and sizes. TopoLayout frequently improves the results in terms of speed and visual quality on these datasets.
Multilevel Refinement for Combinatorial Optimisation Problems
 SE10 9LS
, 2001
"... Abstract. We consider the multilevel paradigm and its potential to aid the solution of combinatorial optimisation problems. The multilevel paradigm is a simple one, which involves recursive coarsening to create a hierarchy of approximations to the original problem. An initial solution is found (some ..."
Abstract

Cited by 54 (5 self)
 Add to MetaCart
Abstract. We consider the multilevel paradigm and its potential to aid the solution of combinatorial optimisation problems. The multilevel paradigm is a simple one, which involves recursive coarsening to create a hierarchy of approximations to the original problem. An initial solution is found (sometimes for the original problem, sometimes the coarsest) and then iteratively refined at each level. As a general solution strategy, the multilevel paradigm has been in use for many years and has been applied to many problem areas (most notably in the form of multigrid techniques). However, with the exception of the graph partitioning problem, multilevel techniques have not been widely applied to combinatorial optimisation problems. In this paper we address the issue of multilevel refinement for such problems and, with the aid of examples and results in graph partitioning, graph colouring and the travelling salesman problem, make a case for its use as a metaheuristic. The results provide compelling evidence that, although the multilevel framework cannot be considered as a panacea for combinatorial problems, it can provide an extremely useful addition to the combinatorial optimisation toolkit. We also give a possible explanation for the underlying process and extract some generic guidelines for its future use on other combinatorial problems.
Online Dynamic Graph Drawing
"... This paper presents an algorithm for drawing a sequence of graphs online. The algorithm strives to maintain the global structure of the graph and thus the user’s mental map, while allowing arbitrary modifications between consecutive layouts. The algorithm works online and uses various execution cu ..."
Abstract

Cited by 53 (1 self)
 Add to MetaCart
This paper presents an algorithm for drawing a sequence of graphs online. The algorithm strives to maintain the global structure of the graph and thus the user’s mental map, while allowing arbitrary modifications between consecutive layouts. The algorithm works online and uses various execution culling methods in order to reduce the layout time and handle large dynamic graphs. Techniques for representing graphs on the GPU allow a speedup by a factor of up to 17 compared to the CPU implementation. The scalability of the algorithm across GPU generations is demonstrated. Applications of the algorithm to the visualization of discussion threads in Internet sites and to the visualization of social networks are provided.
A Multidimensional Approach to ForceDirected Layouts of Large Graphs
, 2000
"... Abstract. We present a novel hierarchical forcedirected method for drawing large graphs. The algorithm produces a graph embedding in an Euclidean space E of any dimension. A two or three dimensional drawing of the graph is then obtained by projecting a higherdimensional embedding into a two or thr ..."
Abstract

Cited by 41 (6 self)
 Add to MetaCart
Abstract. We present a novel hierarchical forcedirected method for drawing large graphs. The algorithm produces a graph embedding in an Euclidean space E of any dimension. A two or three dimensional drawing of the graph is then obtained by projecting a higherdimensional embedding into a two or three dimensional subspace of E. Projecting highdimensional drawings onto two or three dimensions often results in drawings that are “smoother ” and more symmetric. Among the other notable features of our approach are the utilization of a maximal independent set filtration of the set of vertices of a graph, a fast energy function minimization strategy, efficient memory management, and an intelligent initial placement of vertices. Our implementation of the algorithm can draw graphs with tens of thousands of vertices using a negligible amount of memory in less than one minute on a midrange PC. 1