Results 1  10
of
209
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additive ex ..."
Abstract

Cited by 563 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additive expansions based on any tting criterion. Specic algorithms are presented for least{squares, least{absolute{deviation, and Huber{M loss functions for regression, and multi{class logistic likelihood for classication. Special enhancements are derived for the particular case where the individual additive components are regression trees, and tools for interpreting such \TreeBoost" models are presented. Gradient boosting of regression trees produces competitive, highly robust, interpretable procedures for both regression and classication, especially appropriate for mining less than clean data. Connections between this approach and the boosting methods of Freund and Shapire 1996, and Frie...
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 552 (5 self)
 Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vector machine' (RVM), a model of identical functional form to the popular and stateoftheart `support vector machine' (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer basis functions than a comparable SVM while oering a number of additional advantages. These include the benets of probabilistic predictions, automatic estimation of `nuisance' parameters, and the facility to utilise arbitrary basis functions (e.g. non`Mercer' kernels).
An introduction to kernelbased learning algorithms
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2001
"... This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and ..."
Abstract

Cited by 373 (48 self)
 Add to MetaCart
This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and
Fisher Discriminant Analysis With Kernels
, 1999
"... A nonlinear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) nonlinear decision functi ..."
Abstract

Cited by 312 (15 self)
 Add to MetaCart
A nonlinear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) nonlinear decision function in input space. Large scale simulations demonstrate the competitiveness of our approach.
Choosing multiple parameters for support vector machines
 Machine Learning
, 2002
"... Abstract. The problem of automatically tuning multiple parameters for pattern recognition Support Vector Machines (SVMs) is considered. This is done by minimizing some estimates of the generalization error of SVMs using a gradient descent algorithm over the set of parameters. Usual methods for choos ..."
Abstract

Cited by 300 (16 self)
 Add to MetaCart
Abstract. The problem of automatically tuning multiple parameters for pattern recognition Support Vector Machines (SVMs) is considered. This is done by minimizing some estimates of the generalization error of SVMs using a gradient descent algorithm over the set of parameters. Usual methods for choosing parameters, based on exhaustive search become intractable as soon as the number of parameters exceeds two. Some experimental results assess the feasibility of our approach for a large number of parameters (more than 100) and demonstrate an improvement of generalization performance.
LeaveOneOut Support Vector Machines
, 1999
"... We present a new learning algorithm for pattern recognition inspired by a recent upper bound on leaveoneout error [ Jaakkola and Haussler, 1999 ] proved for Support Vector Machines (SVMs) [ Vapnik, 1995; 1998 ] . The new approach directly minimizes the expression given by the bound in an attempt ..."
Abstract

Cited by 217 (4 self)
 Add to MetaCart
We present a new learning algorithm for pattern recognition inspired by a recent upper bound on leaveoneout error [ Jaakkola and Haussler, 1999 ] proved for Support Vector Machines (SVMs) [ Vapnik, 1995; 1998 ] . The new approach directly minimizes the expression given by the bound in an attempt to minimize leaveoneout error. This gives a convex optimization problem which constructs a sparse linear classifier in feature space using the kernel technique. As such the algorithm possesses many of the same properties as SVMs. The main novelty of the algorithm is that apart from the choice of kernel, it is parameterless  the selection of the number of training errors is inherent in the algorithm and not chosen by an extra free parameter as in SVMs. First experiments using the method on benchmark datasets from the UCI repository show results similar to SVMs which have been tuned to have the best choice of parameter. 1 Introduction Support Vector Machines (SVMs), motivated by minim...
Logistic Regression, AdaBoost and Bregman Distances
, 2000
"... We give a unified account of boosting and logistic regression in which each learning problem is cast in terms of optimization of Bregman distances. The striking similarity of the two problems in this framework allows us to design and analyze algorithms for both simultaneously, and to easily adapt al ..."
Abstract

Cited by 203 (43 self)
 Add to MetaCart
We give a unified account of boosting and logistic regression in which each learning problem is cast in terms of optimization of Bregman distances. The striking similarity of the two problems in this framework allows us to design and analyze algorithms for both simultaneously, and to easily adapt algorithms designed for one problem to the other. For both problems, we give new algorithms and explain their potential advantages over existing methods. These algorithms can be divided into two types based on whether the parameters are iteratively updated sequentially (one at a time) or in parallel (all at once). We also describe a parameterized family of algorithms which interpolates smoothly between these two extremes. For all of the algorithms, we give convergence proofs using a general formalization of the auxiliaryfunction proof technique. As one of our sequentialupdate algorithms is equivalent to AdaBoost, this provides the first general proof of convergence for AdaBoost. We show that all of our algorithms generalize easily to the multiclass case, and we contrast the new algorithms with iterative scaling. We conclude with a few experimental results with synthetic data that highlight the behavior of the old and newly proposed algorithms in different settings.
Boosting Algorithms as Gradient Descent
, 2000
"... Much recent attention, both experimental and theoretical, has been focussed on classification algorithms which produce voted combinations of classifiers. Recent theoretical work has shown that the impressive generalization performance of algorithms like AdaBoost can be attributed to the classifier h ..."
Abstract

Cited by 115 (2 self)
 Add to MetaCart
Much recent attention, both experimental and theoretical, has been focussed on classification algorithms which produce voted combinations of classifiers. Recent theoretical work has shown that the impressive generalization performance of algorithms like AdaBoost can be attributed to the classifier having large margins on the training data. We present an abstract algorithm for finding linear combinations of functions that minimize arbitrary cost functionals (i.e functionals that do not necessarily depend on the margin). Many existing voting methods can be shown to be special cases of this abstract algorithm. Then, following previous theoretical results bounding the generalization performance of convex combinations of classifiers in terms of general cost functions of the margin, we present a new algorithm (DOOM II) for performing a gradient descent optimization of such cost functions. Experiments on
An introduction to boosting and leveraging
 Advanced Lectures on Machine Learning, LNCS
, 2003
"... ..."
Online Choice of Active Learning Algorithms
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2004
"... This work is concerned with the question of how to combine online an ensemble of active learners so as to expedite the learning progress in poolbased active learning. We develop an activelearning master algorithm, based on a known competitive algorithm for the multiarmed bandit problem. A major ..."
Abstract

Cited by 88 (2 self)
 Add to MetaCart
This work is concerned with the question of how to combine online an ensemble of active learners so as to expedite the learning progress in poolbased active learning. We develop an activelearning master algorithm, based on a known competitive algorithm for the multiarmed bandit problem. A major challenge in successfully choosing top performing active learners online is to reliably estimate their progress during the learning session. To this end we propose a simple maximum entropy criterion that provides effective estimates in realistic settings. We study the performance of the proposed master algorithm using an ensemble containing two of the best known activelearning algorithms as well as a new algorithm. The resulting