Results 1 
2 of
2
Online stochastic matching: Online actions based on offline statistics
, 2010
"... We consider the online stochastic matching problem proposed by Feldman et al. [4] as a model of display ad allocation. We are given a bipartite graph; one side of the graph corresponds to a fixed set of bins and the other side represents the set of possible ball types. At each time step, a ball is s ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
We consider the online stochastic matching problem proposed by Feldman et al. [4] as a model of display ad allocation. We are given a bipartite graph; one side of the graph corresponds to a fixed set of bins and the other side represents the set of possible ball types. At each time step, a ball is sampled independently from the given distribution and it needs to be matched upon its arrival to an empty bin. The goal is to maximize the size of the matching. We present an online algorithm for this problem with a competitive ratio of 0.702. Before our result, algorithms with a competitive ratio better than 1 − 1/e were known under the assumption that the expected number of arriving balls of each type is integral. A key idea of the algorithm is to collect statistics about the decisions of the optimum offline solution using Monte Carlo sampling and use those statistics to guide the decisions of the online algorithm. We also show that no online algorithm can have a competitive ratio better than 0.823. 1
Backyard Cuckoo Hashing: Constant WorstCase Operations with a Succinct Representation
, 2010
"... The performance of a dynamic dictionary is measured mainly by its update time, lookup time, and space consumption. In terms of update time and lookup time there are known constructions that guarantee constanttime operations in the worst case with high probability, and in terms of space consumption ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
The performance of a dynamic dictionary is measured mainly by its update time, lookup time, and space consumption. In terms of update time and lookup time there are known constructions that guarantee constanttime operations in the worst case with high probability, and in terms of space consumption there are known constructions that use essentially optimal space. In this paper we settle two fundamental open problems: • We construct the first dynamic dictionary that enjoys the best of both worlds: we present a twolevel variant of cuckoo hashing that stores n elements using (1+ϵ)n memory words, and guarantees constanttime operations in the worst case with high probability. Specifically, for any ϵ = Ω((log log n / log n) 1/2) and for any sequence of polynomially many operations, with high probability over the randomness of the initialization phase, all operations are performed in constant time which is independent of ϵ. The construction is based on augmenting cuckoo hashing with a “backyard ” that handles a large fraction of the elements, together with a deamortized perfect hashing scheme for eliminating the dependency on ϵ.