Results 1 
1 of
1
Computer algebra and algebraic geometry  achievements and perspectives
 J. SYMBOLIC COMPUT
, 2000
"... In this survey I should like to introduce some concepts of algebraic geometry and try to demonstrate the fruitful interaction between algebraic geometry and computer algebra and, more generally, between mathematics and computer science. One of the aims of this paper is to show, by means of example ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
In this survey I should like to introduce some concepts of algebraic geometry and try to demonstrate the fruitful interaction between algebraic geometry and computer algebra and, more generally, between mathematics and computer science. One of the aims of this paper is to show, by means of examples, the usefulness of computer algebra to mathematical research. Computer algebra itself is a highly diversified discipline with applications to various areas of mathematics; many of these may be found in numerous research papers, proceedings or textbooks (cf. Buchberger and Winkler, 1998; Cohen et al., 1999; Matzat et al., 1998; ISSAC, 1988–1998). Here, I concentrate mainly on Gröbner bases and leave aside many other topics of computer algebra (cf. Davenport et al., 1988; Von zur Gathen and Gerhard, 1999; Grabmeier et al., 2000). In particular, I do not mention (multivariate) polynomial factorization, another major and important tool in computational algebraic geometry. Gröbner bases were introduced originally by Buchberger as a computational tool for testing solvability of a system of polynomial equations, to count the number of solutions (with multiplicities) if this number is finite and, more algebraically, to compute in the quotient ring modulo the given polynomials. Since then, Gröbner bases have become the major computational tool, not only in algebraic geometry. The importance of Gröbner bases for mathematical research in algebraic geometry is obvious and nowadays their use needs hardly any justification. Indeed, chapters on Gröbner bases and Buchberger’s algorithm (Buchberger, 1965) have been incorporated in many new textbooks on algebraic geometry such as the books of Cox et al. (1992, 1998) or the recent books of Eisenbud (1995) and Vasconcelos (1998), not to mention textbooks which are devoted exclusively to Gröbner bases, such as Adams and Loustaunou (1994),