Results 1  10
of
82
A review of image denoising algorithms, with a new one
 Simul
, 2005
"... Abstract. The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstand ..."
Abstract

Cited by 265 (2 self)
 Add to MetaCart
Abstract. The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding performance when the image model corresponds to the algorithm assumptions but fail in general and create artifacts or remove image fine structures. The main focus of this paper is, first, to define a general mathematical and experimental methodology to compare and classify classical image denoising algorithms and, second, to propose a nonlocal means (NLmeans) algorithm addressing the preservation of structure in a digital image. The mathematical analysis is based on the analysis of the “method noise, ” defined as the difference between a digital image and its denoised version. The NLmeans algorithm is proven to be asymptotically optimal under a generic statistical image model. The denoising performance of all considered methods are compared in four ways; mathematical: asymptotic order of magnitude of the method noise under regularity assumptions; perceptualmathematical: the algorithms artifacts and their explanation as a violation of the image model; quantitative experimental: by tables of L 2 distances of the denoised version to the original image. The most powerful evaluation method seems, however, to be the visualization of the method noise on natural images. The more this method noise looks like a real white noise, the better the method.
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 192 (12 self)
 Add to MetaCart
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of recovering a large matrix from a small subset of its entries (the famous Netflix problem). Offtheshelf algorithms such as interior point methods are not directly amenable to large problems of this kind with over a million unknown entries. This paper develops a simple firstorder and easytoimplement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative and produces a sequence of matrices {X k, Y k} and at each step, mainly performs a softthresholding operation on the singular values of the matrix Y k. There are two remarkable features making this attractive for lowrank matrix completion problems. The first is that the softthresholding operation is applied to a sparse matrix; the second is that the rank of the iterates {X k} is empirically nondecreasing. Both these facts allow the algorithm to make use of very minimal storage space and keep the computational cost of each iteration low. On
Robust Principal Component Analysis?
, 2009
"... This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse co ..."
Abstract

Cited by 138 (6 self)
 Add to MetaCart
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the ℓ1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.
Bregman iterative algorithms for ℓ1minimization with applications to compressed sensing
 SIAM J. Imaging Sci
, 2008
"... Abstract. We propose simple and extremely efficient methods for solving the basis pursuit problem min{‖u‖1: Au = f,u ∈ R n}, which is used in compressed sensing. Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving only a very small number o ..."
Abstract

Cited by 59 (13 self)
 Add to MetaCart
Abstract. We propose simple and extremely efficient methods for solving the basis pursuit problem min{‖u‖1: Au = f,u ∈ R n}, which is used in compressed sensing. Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving only a very small number of 1 instances of the unconstrained problem minu∈Rn μ‖u‖1 + 2 ‖Au−fk ‖ 2 2 for given matrix A and vector f k. We show analytically that this iterative approach yields exact solutions in a finite number of steps and present numerical results that demonstrate that as few as two to six iterations are sufficient in most cases. Our approach is especially useful for many compressed sensing applications where matrixvector operations involving A and A ⊤ can be computed by fast transforms. Utilizing a fast fixedpoint continuation solver that is based solely on such operations for solving the above unconstrained subproblem, we were able to quickly solve huge instances of compressed sensing problems on a standard PC.
Fast Linearized Bregman Iteration for Compressed Sensing
 and Sparse Denoising, 2008. UCLA CAM Reprots
, 2008
"... Abstract. Finding a solution of a linear equation Au = f with various minimization properties arises from many applications. One of such applications is compressed sensing, where an efficient and robusttonoise algorithm to find a minimal ℓ1 norm solution is needed. This means that the algorithm sh ..."
Abstract

Cited by 56 (16 self)
 Add to MetaCart
Abstract. Finding a solution of a linear equation Au = f with various minimization properties arises from many applications. One of such applications is compressed sensing, where an efficient and robusttonoise algorithm to find a minimal ℓ1 norm solution is needed. This means that the algorithm should be tailored for large scale and completely dense matrices A, while Au and A T u can be computed by fast transforms and the solution to seek is sparse. Recently, a simple and fast algorithm based on linearized Bregman iteration was proposed in [28, 32] for this purpose. This paper is to analyze the convergence of linearized Bregman iterations and the minimization properties of their limit. Based on our analysis here, we derive also a new algorithm that is proven to be convergent with a rate. Furthermore, the new algorithm is as simple and fast as the algorithm given in [28, 32] in approximating a minimal ℓ1 norm solution of Au = f as shown by numerical simulations. Hence, it can be used as another choice of an efficient tool in compressed sensing. 1. Introduction. Let A ∈ R m×n with n> m and f ∈ R m be given. The aim of a basis pursuit problem is to find u ∈ R n by solving the following constrained minimization problem min
Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction ∗
"... We propose two algorithms based on Bregman iteration and operator splitting technique for nonlocal TV regularization problems. The convergence of the algorithms is analyzed and applications to deconvolution and sparse reconstruction are presented. 1 ..."
Abstract

Cited by 36 (5 self)
 Add to MetaCart
We propose two algorithms based on Bregman iteration and operator splitting technique for nonlocal TV regularization problems. The convergence of the algorithms is analyzed and applications to deconvolution and sparse reconstruction are presented. 1
Alternating direction algorithms for ℓ1problems in compressive sensing
, 2009
"... Abstract. In this paper, we propose and study the use of alternating direction algorithms for several ℓ1norm minimization problems arising from sparse solution recovery in compressive sensing, including the basis pursuit problem, the basispursuit denoising problems of both unconstrained and constr ..."
Abstract

Cited by 23 (2 self)
 Add to MetaCart
Abstract. In this paper, we propose and study the use of alternating direction algorithms for several ℓ1norm minimization problems arising from sparse solution recovery in compressive sensing, including the basis pursuit problem, the basispursuit denoising problems of both unconstrained and constrained forms, as well as others. We present and investigate two classes of algorithms derived from either the primal or the dual forms of the ℓ1problems. The construction of the algorithms consists of two main steps: (1) to reformulate an ℓ1problem into one having partially separable objective functions by adding new variables and constraints; and (2) to apply an exact or inexact alternating direction method to the resulting problem. The derived alternating direction algorithms can be regarded as firstorder primaldual algorithms because both primal and dual variables are updated at each and every iteration. Convergence properties of these algorithms are established or restated when they already exist. Extensive numerical results in comparison with several stateoftheart algorithms are given to demonstrate that the proposed algorithms are efficient, stable and robust. Moreover, we present numerical results to emphasize two practically important but perhaps overlooked points. One point is that algorithm speed should always be evaluated relative to appropriate solution accuracy; another is that whenever erroneous measurements possibly exist, the ℓ1norm fidelity should be the fidelity of choice in compressive sensing. Key words. Sparse solution recovery, compressive sensing, ℓ1minimization, primal, dual, alternating direction method
Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data
 Int. Symp. Biomedical Imaing
, 2009
"... Compressive sensing is the reconstruction of sparse images or signals from very few samples, by means of solving a tractable optimization problem. In the context of MRI, this can allow reconstruction from many fewer kspace samples, thereby reducing scanning time. Previous work has shown that noncon ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
Compressive sensing is the reconstruction of sparse images or signals from very few samples, by means of solving a tractable optimization problem. In the context of MRI, this can allow reconstruction from many fewer kspace samples, thereby reducing scanning time. Previous work has shown that nonconvex optimization reduces still further the number of samples required for reconstruction, while still being tractable. In this work, we extend recent Fourierbased algorithms for convex optimization to the nonconvex setting, and obtain methods that combine the reconstruction abilities of previous nonconvex approaches with the computational speed of stateoftheart convex methods. Index Terms — Magnetic resonance imaging, image reconstruction, compressive sensing, nonconvex optimization.
Convergence of the Linearized Bregman Iteration for ℓ1norm Minimization
, 2008
"... Abstract. One of the key steps in compressed sensing is to solve the basis pursuit problem minu∈R n{�u�1: Au = f}. Bregman iteration was very successfully used to solve this problem in [40]. Also, a simple and fast iterative algorithm based on linearized Bregman iteration was proposed in [40], which ..."
Abstract

Cited by 21 (7 self)
 Add to MetaCart
Abstract. One of the key steps in compressed sensing is to solve the basis pursuit problem minu∈R n{�u�1: Au = f}. Bregman iteration was very successfully used to solve this problem in [40]. Also, a simple and fast iterative algorithm based on linearized Bregman iteration was proposed in [40], which is described in detail with numerical simulations in [35]. A convergence analysis of the smoothed version of this algorithm was given in [11]. The purpose of this paper is to prove that the linearized Bregman iteration proposed in [40] for the basis pursuit problem indeed converges. 1.
Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction
, 2009
"... Variational models for image segmentation have many applications, but can be slow to compute. Recently, globally convex segmentation models have been introduced which are very reliable, but contain TVregularizers, making them difficult to compute. The previously introduced Split Bregman method is a ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
Variational models for image segmentation have many applications, but can be slow to compute. Recently, globally convex segmentation models have been introduced which are very reliable, but contain TVregularizers, making them difficult to compute. The previously introduced Split Bregman method is a technique for fast minimization of L1 regularized functionals, and has been applied to denoising and compressed sensing problems. By applying the Split Bregman concept to image segmentation problems, we build fast solvers which can outperform more conventional schemes, such as duality based methods and graphcuts. We also consider the related problem of surface reconstruction from unorganized data points, which is used for constructing level set representations in 3 dimensions.