Results 1  10
of
58
Robust Recovery of Signals From a Structured Union of Subspaces
, 2008
"... Traditional sampling theories consider the problem of reconstructing an unknown signal x from a series of samples. A prevalent assumption which often guarantees recovery from the given measurements is that x lies in a known subspace. Recently, there has been growing interest in nonlinear but structu ..."
Abstract

Cited by 112 (43 self)
 Add to MetaCart
Traditional sampling theories consider the problem of reconstructing an unknown signal x from a series of samples. A prevalent assumption which often guarantees recovery from the given measurements is that x lies in a known subspace. Recently, there has been growing interest in nonlinear but structured signal models, in which x lies in a union of subspaces. In this paper we develop a general framework for robust and efficient recovery of such signals from a given set of samples. More specifically, we treat the case in which x lies in a sum of k subspaces, chosen from a larger set of m possibilities. The samples are modelled as inner products with an arbitrary set of sampling functions. To derive an efficient and robust recovery algorithm, we show that our problem can be formulated as that of recovering a blocksparse vector whose nonzero elements appear in fixed blocks. We then propose a mixed ℓ2/ℓ1 program for block sparse recovery. Our main result is an equivalence condition under which the proposed convex algorithm is guaranteed to recover the original signal. This result relies on the notion of block restricted isometry property (RIP), which is a generalization of the standard RIP used extensively in the context of compressed sensing. Based on RIP we also prove stability of our approach in the presence of noise and modeling errors. A special case of our framework is that of recovering multiple measurement vectors (MMV) that share a joint sparsity pattern. Adapting our results to this context leads to new MMV recovery methods as well as equivalence conditions under which the entire set can be determined efficiently.
Distributed compressed sensing
, 2005
"... Compressed sensing is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. In this paper we introduce a new theory for distributed compressed sensing (DCS) that enables new distributed coding algori ..."
Abstract

Cited by 84 (21 self)
 Add to MetaCart
Compressed sensing is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. In this paper we introduce a new theory for distributed compressed sensing (DCS) that enables new distributed coding algorithms for multisignal ensembles that exploit both intra and intersignal correlation structures. The DCS theory rests on a new concept that we term the joint sparsity of a signal ensemble. We study in detail three simple models for jointly sparse signals, propose algorithms for joint recovery of multiple signals from incoherent projections, and characterize theoretically and empirically the number of measurements per sensor required for accurate reconstruction. We establish a parallel with the SlepianWolf theorem from information theory and establish upper and lower bounds on the measurement rates required for encoding jointly sparse signals. In two of our three models, the results are asymptotically bestpossible, meaning that both the upper and lower bounds match the performance of our practical algorithms. Moreover, simulations indicate that the asymptotics take effect with just a moderate number of signals. In some sense DCS is a framework for distributed compression of sources with memory, which has remained a challenging problem for some time. DCS is immediately applicable to a range of problems in sensor networks and arrays.
From theory to practice: SubNyquist sampling of sparse wideband analog signals
 IEEE J. SEL. TOPICS SIGNAL PROCESS
, 2010
"... Conventional subNyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind subNyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. ..."
Abstract

Cited by 69 (42 self)
 Add to MetaCart
Conventional subNyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind subNyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. Our primary design goals are efficient hardware implementation and low computational load on the supporting digital processing. We propose a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms. The product is then lowpass filtered and sampled uniformly at a low rate, which is orders of magnitude smaller than Nyquist. Perfect recovery from the proposed samples is achieved under certain necessary and sufficient conditions. We also develop a digital architecture, which allows either reconstruction of the analog input, or processing of any band of interest at a low rate, that is, without interpolating to the high Nyquist rate. Numerical simulations demonstrate many engineering aspects: robustness to noise and mismodeling, potential hardware simplifications, realtime performance for signals with timevarying support and stability to quantization effects. We compare our system with two previous approaches: periodic nonuniform sampling, which is bandwidth limited by existing hardware devices, and the random demodulator, which is restricted to discrete multitone signals and has a high computational load. In the broader context of Nyquist sampling, our scheme has the potential to break through the bandwidth barrier of stateoftheart analog conversion technologies such as interleaved converters.
Blind Multiband Signal Reconstruction: Compressed Sensing for Analog Signals
"... We address the problem of reconstructing a multiband signal from its subNyquist pointwise samples, when the band locations are unknown. Our approach assumes an existing multicoset sampling. Prior recovery methods for this sampling strategy either require knowledge of band locations or impose stric ..."
Abstract

Cited by 61 (51 self)
 Add to MetaCart
We address the problem of reconstructing a multiband signal from its subNyquist pointwise samples, when the band locations are unknown. Our approach assumes an existing multicoset sampling. Prior recovery methods for this sampling strategy either require knowledge of band locations or impose strict limitations on the possible spectral supports. In this paper, only the number of bands and their widths are assumed without any other limitations on the support. We describe how to choose the parameters of the multicoset sampling so that a unique multiband signal matches the given samples. To recover the signal, the continuous reconstruction is replaced by a single finitedimensional problem without the need for discretization. The resulting problem is studied within the framework of compressed sensing, and thus can be solved efficiently using known tractable algorithms from this emerging area. We also develop a theoretical lower bound on the average sampling rate required for blind signal reconstruction, which is twice the minimal rate of knownspectrum recovery. Our method ensures perfect reconstruction for a wide class of signals sampled at the minimal rate. Numerical experiments are presented demonstrating blind sampling and reconstruction with minimal sampling rate.
Blocksparse signals: Uncertainty relations and efficient recovery
 IEEE Trans. Signal Process
, 2010
"... Abstract—We consider efficient methods for the recovery of blocksparse signals—i.e., sparse signals that have nonzero entries occurring in clusters—from an underdetermined system of linear equations. An uncertainty relation for blocksparse signals is derived, based on a blockcoherence measure, wh ..."
Abstract

Cited by 51 (13 self)
 Add to MetaCart
Abstract—We consider efficient methods for the recovery of blocksparse signals—i.e., sparse signals that have nonzero entries occurring in clusters—from an underdetermined system of linear equations. An uncertainty relation for blocksparse signals is derived, based on a blockcoherence measure, which we introduce. We then show that a blockversion of the orthogonal matching pursuit algorithm recovers block ksparse signals in no more than k steps if the blockcoherence is sufficiently small. The same condition on blockcoherence is shown to guarantee successful recovery through a mixed `2=`1optimization approach. This complements previous recovery results for the blocksparse case which relied on small blockrestricted isometry constants. The significance of the results presented in this paper lies in the fact that making explicit use of blocksparsity can provably yield better reconstruction properties than treating the signal as being sparse in the conventional sense, thereby ignoring the additional structure in the problem. Index Terms—Basis pursuit, blocksparsity, compressed sensing, matching pursuit. I.
Compressed Sensing of Analog Signals in ShiftInvariant Spaces
, 2009
"... A traditional assumption underlying most data converters is that the signal should be sampled at a rate exceeding twice the highest frequency. This statement is based on a worstcase scenario in which the signal occupies the entire available bandwidth. In practice, many signals are sparse so that on ..."
Abstract

Cited by 50 (33 self)
 Add to MetaCart
A traditional assumption underlying most data converters is that the signal should be sampled at a rate exceeding twice the highest frequency. This statement is based on a worstcase scenario in which the signal occupies the entire available bandwidth. In practice, many signals are sparse so that only part of the bandwidth is used. In this paper, we develop methods for lowrate sampling of continuoustime sparse signals in shiftinvariant (SI) spaces, generated by m kernels with period T. We model sparsity by treating the case in which only k out of the m generators are active, however, we do not know which k are chosen. We show how to sample such signals at a rate much lower than m/T, which is the minimal sampling rate without exploiting sparsity. Our approach combines ideas from analog sampling in a subspace with a recently developed block diagram that converts an infinite set of sparse equations to a finite counterpart. Using these two components we formulate our problem within the framework of finite compressed sensing (CS) and then rely on algorithms developed in that context. The distinguishing feature of our results is that in contrast to standard CS, which treats finitelength vectors, we consider sampling of analog signals for which no underlying finitedimensional model exists. The proposed framework allows to extend much of the recent literature on CS to the analog domain.
Average Case Analysis of Multichannel Sparse Recovery Using Convex Relaxation
"... In this paper, we consider recovery of jointly sparse multichannel signals from incomplete measurements. Several approaches have been developed to recover the unknown sparse vectors from the given observations, including thresholding, simultaneous orthogonal matching pursuit (SOMP), and convex relax ..."
Abstract

Cited by 50 (23 self)
 Add to MetaCart
In this paper, we consider recovery of jointly sparse multichannel signals from incomplete measurements. Several approaches have been developed to recover the unknown sparse vectors from the given observations, including thresholding, simultaneous orthogonal matching pursuit (SOMP), and convex relaxation based on a mixed matrix norm. Typically, worstcase analysis is carried out in order to analyze conditions under which the algorithms are able to recover any jointly sparse set of vectors. However, such an approach is not able to provide insights into why joint sparse recovery is superior to applying standard sparse reconstruction methods to each channel individually. Previous work considered an average case analysis of thresholding and SOMP by imposing a probability model on the measured signals. In this paper, our main focus is on analysis of convex relaxation techniques. In particular, we focus on the mixed ℓ2,1 approach to multichannel recovery. We show that under a very mild condition on the sparsity and on the dictionary characteristics, measured for example by the coherence, the probability of recovery failure decays exponentially in the number of channels. This demonstrates that most of the time, multichannel sparse recovery is indeed superior to single channel methods. Our probability bounds are valid and meaningful even for a small number of signals. Using the tools we develop to analyze the convex relaxation method, we also tighten the previous bounds for thresholding and SOMP.
Compressed Sensing of BlockSparse Signals: Uncertainty Relations and Efficient Recovery
, 2009
"... We consider compressed sensing of blocksparse signals, i.e., sparse signals that have nonzero coefficients occurring in clusters. An uncertainty relation for blocksparse signals is derived, based on a blockcoherence measure, which we introduce. We then show that a blockversion of the orthogonal ..."
Abstract

Cited by 29 (10 self)
 Add to MetaCart
We consider compressed sensing of blocksparse signals, i.e., sparse signals that have nonzero coefficients occurring in clusters. An uncertainty relation for blocksparse signals is derived, based on a blockcoherence measure, which we introduce. We then show that a blockversion of the orthogonal matching pursuit algorithm recovers block ksparse signals in no more than k steps if the blockcoherence is sufficiently small. The same condition on blockcoherence is shown to guarantee successful recovery through a mixed ℓ2/ℓ1optimization approach. This complements previous recovery results for the blocksparse case which relied on small blockrestricted isometry constants. The significance of the results presented in this paper lies in the fact that making explicit use of blocksparsity can provably yield better reconstruction properties than treating the signal as being sparse in the conventional sense, thereby ignoring the additional structure in the problem.
Structured compressed sensing: From theory to applications
 IEEE Trans. Signal Process
, 2011
"... Abstract—Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discretetodiscrete measurement architectures using matrices of randomized nature and signal models based on ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
Abstract—Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discretetodiscrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuoustime signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications. Index Terms—Approximation algorithms, compressed sensing, compression algorithms, data acquisition, data compression, sampling methods. I.
Xampling: Signal acquisition and processing in union of subspaces,” Electr
 CCIT Rep. 747, Oct. 2009 [Online]. Available: http://arxiv.org/abs/0911.0519
"... Abstract—We introduce Xampling, a unified framework for signal acquisition and processing of signals in a union of subspaces. The main functions of this framework are two: Analog compression that narrows down the input bandwidth prior to sampling with commercial devices followed by a nonlinear algor ..."
Abstract

Cited by 16 (11 self)
 Add to MetaCart
Abstract—We introduce Xampling, a unified framework for signal acquisition and processing of signals in a union of subspaces. The main functions of this framework are two: Analog compression that narrows down the input bandwidth prior to sampling with commercial devices followed by a nonlinear algorithm that detects the input subspace prior to conventional signal processing. A representative union model of spectrally sparse signals serves as a testcase to study these Xampling functions. We adopt three metrics for the choice of analog compression: robustness to model mismatch, required hardware accuracy, and software complexities. We conduct a comprehensive comparison between two subNyquist acquisition strategies for spectrally sparse signals, the random demodulator and the modulated wideband converter (MWC), in terms of these metrics and draw operative conclusions regarding the choice of analog compression. We then address lowrate signal processing and develop an algorithm for that purpose that enables convenient signal processing at subNyquist rates from samples obtained by the MWC. We conclude by showing that a variety of other sampling approaches for different union classes fit nicelyintoourframework. Index Terms—Analog to digital conversion, baseband processing, compressed sensing, digital signal processing, modulated wideband converter, subNyquist, Xampling. I.