Results 1  10
of
67
Normalized Cuts and Image Segmentation
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... ..."
Segmentation using eigenvectors: A unifying view
 In ICCV
, 1999
"... Automatic grouping and segmentation of images remains a challenging problem in computer vision. Recently, a number of authors have demonstrated good performance on this task using methods that are based on eigenvectors of the a nity matrix. These approaches are extremely attractive in that they are ..."
Abstract

Cited by 317 (1 self)
 Add to MetaCart
Automatic grouping and segmentation of images remains a challenging problem in computer vision. Recently, a number of authors have demonstrated good performance on this task using methods that are based on eigenvectors of the a nity matrix. These approaches are extremely attractive in that they are based on simple eigendecomposition algorithms whose stability is well understood. Nevertheless, the use of eigendecompositions in the context of segmentation is far from well understood. In this paper we give a unied treatment of these algorithms, and show the close connections between them while highlighting their distinguishing features. We then prove results on eigenvectors of block matrices that allow us to analyze the performance of these algorithms in simple grouping settings. Finally, we use our analysis to motivate a variation on the existing methods that combines aspects from di erent eigenvector segmentation algorithms. We illustrate our analysis with results on real and synthetic images. Human perceiving a scene can often easily segment it into coherent segments or groups. There has been a tremendous amount of e ort devoted to achieving the same level of performance in computer vision. In many cases, this is done by associating with each pixel a feature vector (e.g. color, motion, texture, position) and using a clustering or grouping algorithm on these feature vectors. Perhaps the cleanest approach to segmenting points in feature space is based on mixture models in which one assumes the data were generated by multiple processes and estimates the parameters of the processes and the number of components in the mixture. The assignment of points to clusters can then be easily performed by calculating the posterior probability ofa point belonging to a cluster. Despite the elegance of this approach, the estimation process leads to a notoriously di cult optimization. The frequently used EM algorithm [3] often converges to a local maximum that depends on the initial conditions. Recently, anumber of authors [11, 10, 8, 9, 2] have suggested alternative segmentation methods that are based on eigenvectors of the (possibly normalized) \a nity matrix". Figure 1a shows two clusters of points and gure 1b shows the a nity matrix de ned by:
Spectral grouping using the Nyström method
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2004
"... Spectral graph theoretic methods have recently shown great promise for the problem of image segmentation. However, due to the computational demands of these approaches, applications to large problems such as spatiotemporal data and high resolution imagery have been slow to appear. The contribution ..."
Abstract

Cited by 188 (1 self)
 Add to MetaCart
Spectral graph theoretic methods have recently shown great promise for the problem of image segmentation. However, due to the computational demands of these approaches, applications to large problems such as spatiotemporal data and high resolution imagery have been slow to appear. The contribution of this paper is a method that substantially reduces the computational requirements of grouping algorithms based on spectral partitioning making it feasible to apply them to very large grouping problems. Our approach is based on a technique for the numerical solution of eigenfunction problems knownas the Nyström method. This method allows one to extrapolate the complete grouping solution using only a small number of "typical" samples. In doing so, we leverage the fact that there are far fewer coherent groups in a scene than pixels.
A spectral technique for correspondence problems using pairwise constraints
 In ICCV
, 2005
"... We present an efficient spectral method for finding consistent correspondences between two sets of features. We build the adjacency matrix M of a graph whose nodes represent the potential correspondences and the weights on the links represent pairwise agreements between potential correspondences. Co ..."
Abstract

Cited by 131 (9 self)
 Add to MetaCart
We present an efficient spectral method for finding consistent correspondences between two sets of features. We build the adjacency matrix M of a graph whose nodes represent the potential correspondences and the weights on the links represent pairwise agreements between potential correspondences. Correct assignments are likely to establish links among each other and thus form a strongly connected cluster. Incorrect correspondences establish links with the other correspondences only accidentally, so they are unlikely to belong to strongly connected clusters. We recover the correct assignments based on how strongly they belong to the main cluster of M, by using the principal eigenvector of M and imposing the mapping constraints required by the overall correspondence mapping (onetoone or onetomany). The experimental evaluation shows that our method is robust to outliers, accurate in terms of matching rate, while being much faster than existing methods. 1.
Segmentation by Grouping Junctions
 In IEEE Conference on Computer Vision and Pattern Recognition
, 1998
"... We propose a method for segmenting grayvalue images. By segmentation, we mean a map from the set of pixels to a small set of levels such that each connected component of the set of pixels with the same level forms a relatively large and "meaningful" region. The method finds a set of levels with ass ..."
Abstract

Cited by 93 (3 self)
 Add to MetaCart
We propose a method for segmenting grayvalue images. By segmentation, we mean a map from the set of pixels to a small set of levels such that each connected component of the set of pixels with the same level forms a relatively large and "meaningful" region. The method finds a set of levels with associated gray values by first finding junctions in the image and then seeking a minimum set of threshold values that preserves the junctions. Then it finds a segmentation map that maps each pixel to the level with the closest gray value to the pixel data, within a smoothness constraint. For a convex smoothing penalty, we show the global optimal solution for an energy function that fits the data can be obtained in a polynomial time, by a novel use of the maximumflow algorithm. Our approach is in contrast to a view in computer vision where segmentation is driven by intensity gradient, usually not yielding closed boundaries. 1. Introduction Image segmentation is a prototypical problem in comp...
Self Organization in Vision: Stochastic Clustering for Image Segmentation, Perceptual Grouping, and Image Database Organization
, 2001
"... We present a stochastic clustering algorithm which uses pairwise similarity of elements, and show how it can be used to address various problems in computer vision, including the lowlevel image segmentation, midlevel perceptual grouping, and highlevel image database organization. The clustering p ..."
Abstract

Cited by 76 (4 self)
 Add to MetaCart
We present a stochastic clustering algorithm which uses pairwise similarity of elements, and show how it can be used to address various problems in computer vision, including the lowlevel image segmentation, midlevel perceptual grouping, and highlevel image database organization. The clustering problem is viewed as a graph partitioning problem, where nodes represent data elements and the weights of the edges represent pairwise similarities. We generate samples of cuts in this graph, by using Karger's contraction algorithm, and compute an "average" cut which provides the basis for our solution to the clustering problem. The stochastic nature of our method makes it robust against noise, including accidental edges and small spurious clusters. The complexity of our algorithm is very low: O(E log² N) for N objects, E similarity relations and a fixed accuracy level. In addition, and without additional computational cost, our algorithm provides a hierarchy of nested partitions. We demonstrate the superiority of our method for image segmentation on a few synthetic and real images, B&W and color. Our other examples include the concatenation of edges in a cluttered scene (perceptual grouping), and the organization of an image database for the purpose of multiview 3D object recognition.
Segmentation of Multiple Salient Closed Contours from Real Images
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2003
"... Using a saliency measure based on the global property of contour closure, we have developed a segmentation method which identifies smooth closed contours bounding objects of unknown shape in real images. The saliency measure incorporates the Gestalt principles of proximity and good continuity that ..."
Abstract

Cited by 58 (1 self)
 Add to MetaCart
Using a saliency measure based on the global property of contour closure, we have developed a segmentation method which identifies smooth closed contours bounding objects of unknown shape in real images. The saliency measure incorporates the Gestalt principles of proximity and good continuity that previous methods have also exploited. Unlike previous methods, we incorporate contour closure by finding the eigenvector with the largest positive real eigenvalue of a transition matrix for aMarkov process whereedges from the image serve as states. Element i; j of the transition matrix is the conditional probability that a contour which contains edge j will also contain edge i. In this paper, we show how the saliency measure, defined for individual edges, can be used to derive a saliency relation, defined for pairs of edges, and further show that stronglyconnected components of the graph representing the saliency relation correspond to smooth closed contours in the image. Finally, we report for the first time, results on large real images for which segmentation takes an average of about 10 seconds per object on a generalpurpose workstation.
Supervised Learning of Large Perceptual Organization: Graph Spectral Partitioning and Learning Automata
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2000
"... this article, please send email to: tpami@computer.org, and reference IEEECS Log Number 107780 ..."
Abstract

Cited by 57 (5 self)
 Add to MetaCart
this article, please send email to: tpami@computer.org, and reference IEEECS Log Number 107780
Learning affinity functions for image segmentation: combining patchbased and gradientbased approaches
 In Proc. IEEE Conf. Comput. Vision and Pattern Recognition
, 2003
"... This paper studies the problem of combining region and boundary cues for natural image segmentation. We employ a large database of manually segmented images in order to learn an optimal affinity function between pairs of pixels. These pairwise affinities can then be used to cluster the pixels into v ..."
Abstract

Cited by 57 (3 self)
 Add to MetaCart
This paper studies the problem of combining region and boundary cues for natural image segmentation. We employ a large database of manually segmented images in order to learn an optimal affinity function between pairs of pixels. These pairwise affinities can then be used to cluster the pixels into visually coherent groups. Region cues are computed as the similarity in brightness, color, and texture between image patches. Boundary cues are incorporated by looking for the presence of an “intervening contour”, a large gradient along a straight line connecting two pixels. We first use the dataset of human segmentations to individually optimize parameters of the patch and gradient features for brightness, color, and texture cues. We then quantitatively measure the power of different feature combinations by computing the precision and recall of classifiers trained using those features. The mutual information between the output of the classifiers and the samesegment indicator function provides an alternative evaluation technique that yields identical conclusions. As expected, the best classifier makes use of brightness, color, and texture features, in both patch and gradient forms. We find that for brightness, the gradient cue outperforms the patch similarity. In contrast, using color patch similarity yields better results than using color gradients. Texture is the most powerful of the three channels, with both patches and gradients carrying significant independent information. Interestingly, the proximity of the two pixels does not add any information beyond that provided by the similarity cues. We also find that the convexity assumptions made by the intervening contour approach are supported by the ecological statistics of the dataset. 1.
A New GraphTheoretic Approach to Clustering, with Applications to Computer Vision
, 2004
"... This work applies cluster analysis as a unified approach for a wide range of vision applications, thereby combining the research domain of computer vision and that of machine learning. Cluster analysis is the formal study of algorithms and methods for recovering the inherent structure within a given ..."
Abstract

Cited by 44 (4 self)
 Add to MetaCart
This work applies cluster analysis as a unified approach for a wide range of vision applications, thereby combining the research domain of computer vision and that of machine learning. Cluster analysis is the formal study of algorithms and methods for recovering the inherent structure within a given dataset. Many problems of computer vision have precisely this goal, namely to find which visual entities belong to an inherent structure, e.g. in an image or in a database of images. For example, a meaningful structure in the context of image segmentation is a set of pixels which correspond to the same object in a scene. Clustering algorithms can be used to partition the pixels of an image into meaningful parts, which may correspond to different objects. In this work we focus on the problems of image segmentation and image database organization. The visual entities to consider are pixels and images, respectively. Our first contribution in this work is a novel partitional (flat) clustering algorithm. The algorithm uses pairwise representation, where the visual objects (pixels,