Results 1  10
of
11
Database Query Languages Embedded in the Typed Lambda Calculus
, 1993
"... We investigate the expressive power of the typed calculus when expressing computations over finite structures, i.e., databases. We show that the simply typed calculus can express various database query languages such as the relational algebra, fixpoint logic, and the complex object algebra. In ..."
Abstract

Cited by 28 (6 self)
 Add to MetaCart
We investigate the expressive power of the typed calculus when expressing computations over finite structures, i.e., databases. We show that the simply typed calculus can express various database query languages such as the relational algebra, fixpoint logic, and the complex object algebra. In our embeddings, inputs and outputs are terms encoding databases, and a program expressing a query is a term which types when applied to an input and reduces to an output.
The Impact of the Lambda Calculus in Logic and Computer Science
 BULLETIN OF SYMBOLIC LOGIC
, 1997
"... One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the represent ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the representation of reasoning and the resulting systems of computer mathematics on the other hand.
Fixed Points and Extensionality in Typed Functional Programming Languages
, 1992
"... ..."
(Show Context)
Typed Query Languages for Databases Containing Queries
 INFORMATION SYSTEMS
, 1999
"... This paper introduces and studies the relational meta algebra, a statically typed extension of the relational algebra to allow for meta programming in databases. In this meta algebra one can manipulate database relations involving not only stored data values (as in classical relational databases) ..."
Abstract

Cited by 14 (6 self)
 Add to MetaCart
This paper introduces and studies the relational meta algebra, a statically typed extension of the relational algebra to allow for meta programming in databases. In this meta algebra one can manipulate database relations involving not only stored data values (as in classical relational databases) but also stored relational algebra expressions. Topics discussed include modeling of advanced database applications involving "procedural data"; desirability as well as limitations of a strict typing discipline in this context; equivalence with a firstorder calculus; and global expressive power and nonredundancy of the proposed formalism.
Functional Database Query Languages as Typed Lambda Calculi of Fixed Order (Extended Abstract)
 In Proceedings 13th PODS
, 1994
"... We present a functional framework for database query languages, which is analogous to the conventional logical framework of firstorder and fixpoint formulas over finite structures. We use atomic constants of order 0, equality among these constants, variables, application, lambda abstraction, and le ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
We present a functional framework for database query languages, which is analogous to the conventional logical framework of firstorder and fixpoint formulas over finite structures. We use atomic constants of order 0, equality among these constants, variables, application, lambda abstraction, and let abstraction; all typed using fixed order ( 5) functionalities. In this framework, proposed in [21] for arbitrary order functionalities, queries and databases are both typed lambda terms, evaluation is by reduction, and the main programming technique is list iteration. We define two families of languages: TLI = i or simplytyped list iteration of order i +3 with equality, and MLI = i or MLtyped list iteration of order i+3 with equality; we use i+3 since our list representation of databases requires at least order 3. We show that: FOqueries ` TLI = 0 ` MLI = 0 ` LOGSPACEqueries ` TLI = 1 = MLI = 1 = PTIMEqueries ` TLI = 2 , where equality is no longer a primitive in TLI = 2 . We also show that ML type inference, restricted to fixed order, is polynomial in the size of the program typed. Since programming by using low order functionalities and type inference is common in functional languages, our results indicate that such programs suffice for expressing efficient computations and that their MLtypes can be efficiently inferred.
Finite Model Theory In The Simply Typed Lambda Calculus
, 1994
"... Church's simply typed calculus is a very basic framework for functional programming language research. However, it is common to augment this framework with additional programming constructs, because its expressive power for functions over the domain of Church numerals is very limited. In this ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
Church's simply typed calculus is a very basic framework for functional programming language research. However, it is common to augment this framework with additional programming constructs, because its expressive power for functions over the domain of Church numerals is very limited. In this thesis: (1) We reexamine the expressive power of the "pure" simply typed calculus, but over encodings of finite relational structures, i. e., finite models or databases . In this novel framework the simply typed calculus expresses all elementary functions from finite models to finite models. In addition, many common database query languages, e. g., relational algebra, Datalog : , and the Abiteboul/Beeri complex object algebra, can be embedded into it. The embeddings are feasible in the sense that the terms corresponding to PTIME queries can be evaluated in polynomial time. (2) We examine fixedorder fragments of the simply typed calculus to determine machine independent characterizations of complexity classes. For this we augment the calculus with atomic constants and equality among atomic constants. We show that over ordered structures, the order 3, 4, 5, and 6 fragments express exactly the firstorder, PTIME, PSPACE, and EXPTIME queries, respectively, and we conjecture that for general k 1, order 2 k + 4 expresses exactly the kEXPTIME queries and order 2 k + 5 expresses exactly the kEXPSPACE queries. (3) We also reexamine other functional characterizations of PTIME and we show that method schemas with ordered objects express exactly PTIME. This is a firstorder framework proposed for objectoriented databasesas opposed to the above higherorder frameworks. In summary, this research provides a link between finite model theory (and thus computational complexity), dat...
On the expressive power of simply typed and letpolymorphic lambda calculi
 11th Annual IEEE Symp. on Logic in Computer Science (LICS'96)
, 1996
"... We present a functional framework for descriptive computational complexity, in which the Regular, Firstorder, Ptime, Pspace, kExptime, kExpspace (k 1), and Elementary sets have syntactic characterizations. In this framework, typed lambda terms represent inputs and outputs as well as programs. The ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
We present a functional framework for descriptive computational complexity, in which the Regular, Firstorder, Ptime, Pspace, kExptime, kExpspace (k 1), and Elementary sets have syntactic characterizations. In this framework, typed lambda terms represent inputs and outputs as well as programs. The lambda calculi describing the above computational complexity classes are simply or letpolymorphically typed with functionalities of fixed order. They consist of: order 0 atomic constants, order 1 equality among these constants, variables, application, and abstraction. Increasing functionality order by one for these languages corresponds to increasing the computational complexity by one alternation. This exact correspondence is established using a semantic evaluation of languages for each fixed order, which is the primary technical contribution of this paper.
An Analysis of the CoreML Language: Expressive Power and Type Reconstruction
 In Proc. 21st Int'l Coll. Automata, Languages, and Programming
, 1994
"... CoreML is a basic subset of most functional programming languages. It consists of the simply typed (or monomorphic) calculus, simply typed equality over atomic constants, and let as the only polymorphic construct. We present a synthesis of recent results which characterize this "toy" ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
CoreML is a basic subset of most functional programming languages. It consists of the simply typed (or monomorphic) calculus, simply typed equality over atomic constants, and let as the only polymorphic construct. We present a synthesis of recent results which characterize this "toy" language's expressive power as well as its type reconstruction (or type inference) problem. More specifically: (1) CoreML can express exactly the ELEMENTARY queries, where a program input is a database encoded as a term and a query program is a term whose application to the input normalizes to the output database. In addition, it is possible to express all the PTIME queries so that this normalization process is polynomial in the input size. (2) The polymorphism of let can be explained using a simple algorithmic reduction to monomorphism, and provides flexibility, without affecting expressibility. Algorithms for type reconstruction offer the additional convenience of static typing without type declarations. Given polymorphism, the price of this convenience is an increase in complexity from lineartime in the size of the program typed (without let) to completeness in exponentialtime (with let).
Bibliography
"... [3] Avgousti M., A.N. Beris, Nonaxisymmetric modes in viscoelastic TaylorCouette ..."
Abstract
 Add to MetaCart
[3] Avgousti M., A.N. Beris, Nonaxisymmetric modes in viscoelastic TaylorCouette