Results 1  10
of
90
Structure and Complexity of Relational Queries
 Journal of Computer and System Sciences
, 1982
"... This paper is an attempt at laying the foundations for the classification of queries on relational data bases according to their structure and their computational complexity. Using the operations of composition and fixpoints, a Z// hierarchy of height w 2, called the fixpoint query hierarchy, i ..."
Abstract

Cited by 243 (3 self)
 Add to MetaCart
This paper is an attempt at laying the foundations for the classification of queries on relational data bases according to their structure and their computational complexity. Using the operations of composition and fixpoints, a Z// hierarchy of height w 2, called the fixpoint query hierarchy, is defined, and its properties investigated. The hierarchy includes most of the queries considered in the literathre including those of Codd and Aho and Ullman
Logic and databases: a deductive approach
 ACM Computing Surveys
, 1984
"... The purpose of this paper is to show that logic provides a convenient formalism for studying classical database problems. There are two main parts to the paper, devoted respectively to conventional databases and deductive databases. In the first part, we focus on query languages, integrity modeling ..."
Abstract

Cited by 143 (2 self)
 Add to MetaCart
The purpose of this paper is to show that logic provides a convenient formalism for studying classical database problems. There are two main parts to the paper, devoted respectively to conventional databases and deductive databases. In the first part, we focus on query languages, integrity modeling and maintenance, query optimization, and data
ILOG: Declarative Creation and Manipulation of Object Identifiers
, 1991
"... yosikawaQkyotosu.ac.jp Abstract: This paper introduces ILOG ( a declarative language in the style of (stratified) datalog ( which can be used for querying, schema translation, and schema augmentation in the context of objectbased data models. The semantics of ILOG is based on the use of Skolem fun ..."
Abstract

Cited by 90 (1 self)
 Add to MetaCart
yosikawaQkyotosu.ac.jp Abstract: This paper introduces ILOG ( a declarative language in the style of (stratified) datalog ( which can be used for querying, schema translation, and schema augmentation in the context of objectbased data models. The semantics of ILOG is based on the use of Skolem functors, and is closely related to semantics for objectbased data manipulation languages which provide mechanisms for explicit creation of object identifiers (OIDs). A normal form is presented for ILOG ’ programs not involving recursion through OID creation, which identifies a precise correspondence between OIDs created in the target, and values and OIDs in the source. The expressive power of various sublanguages of ILOG ’ is shown to range from a natural generalization of the conjunctive queries to the objectbased context, to a language which can specify all computable database translat.ions (up to duplicate copies). The issue of testing vuliilityof ILOG programs translat.ing one semantic schema to another is studied: cases are presented for which severalvalidity issues (e.g., functional and/or subset relationships in the
Formal Models Of Web Queries
 In Proc. of ACM PODS
, 1997
"... We present a new formal model of query and computation on the Web. We focus on two important aspects that distinguish the access to Web data from the access to a standard database system: the navigational nature of the access and the lack of concurrency control. We show that these two issues have si ..."
Abstract

Cited by 77 (3 self)
 Add to MetaCart
We present a new formal model of query and computation on the Web. We focus on two important aspects that distinguish the access to Web data from the access to a standard database system: the navigational nature of the access and the lack of concurrency control. We show that these two issues have significant effects on the computability of queries. To illustrate the ideas and how they can be used in practice for designing appropriate Web query languages, we consider a particular query language, the Web calculus, an abstraction and extension of the practical Web query language WebSQL. c fl1998 Elsevier Science Ltd. All rights reserved Key words: World Wide Web, Web Queries, Query Languages, Computability, Formal Models 1. INTRODUCTION Tools and techniques for retrieving information from the World Wide Web are rapidly being developed [9, 10, 13, 4, 12, 8]. Most of these works are based on the metaphor of the Web as a database, in order to carry over and adapt familiar query languages s...
Towards Tractable Algebras for Bags
, 1993
"... Bags, i.e. sets with duplicates, are often used to implement relations in database systems. In this paper, we study the expressive power of algebras for manipulating bags. The algebra we present is a simple extension of the nested relation algebra. Our aim is to investigate how the use of bags in ..."
Abstract

Cited by 61 (4 self)
 Add to MetaCart
Bags, i.e. sets with duplicates, are often used to implement relations in database systems. In this paper, we study the expressive power of algebras for manipulating bags. The algebra we present is a simple extension of the nested relation algebra. Our aim is to investigate how the use of bags in the language extends its expressive power, and increases its complexity. We consider two main issues, namely (i) the impact of the depth of bag nesting on the expressive power, and (ii) the complexity and the expressive power induced by the algebraic operations. We show that the bag algebra is more expressive than the nested relation algebra (at all levels of nesting), and that the difference may be subtle. We establish a hierarchy based on the structure of algebra expressions. This hierarchy is shown to be highly related to the properties of the powerset operator. Invited to a special issue of the Journal of Computer and System Sciences selected from ACM Princ. of Database Systems,...
Queries and Computation on the Web
, 1997
"... The paper introduces a model of the Web as an infinite, semistructured set of objects. We reconsider the classical notions of genericity and computability of queries in this new context and relate them to styles of computation prevalent on the Web, based on browsing and searching. We revisit severa ..."
Abstract

Cited by 58 (3 self)
 Add to MetaCart
The paper introduces a model of the Web as an infinite, semistructured set of objects. We reconsider the classical notions of genericity and computability of queries in this new context and relate them to styles of computation prevalent on the Web, based on browsing and searching. We revisit several wellknown declarative query languages (firstorder logic, Datalog, and Datalog with negation) and consider their computational characteristics in terms the notions introduced in this paper. In particular, we are interested in languages or fragments thereof which can be implemented by browsing, or by browsing and searching combined. Surprisingly, stratified and wellfounded semantics for negation turn out to have basic shortcomings in this context, while inflationary semantics emerges as an appealing alternative.
Finitely Representable Databases
, 1995
"... : We study classes of infinite but finitely representable databases based on constraints, motivated by new database applications such as geographical databases. We formally define these notions and introduce the concept of query which generalizes queries over classical relational databases. We prove ..."
Abstract

Cited by 55 (8 self)
 Add to MetaCart
: We study classes of infinite but finitely representable databases based on constraints, motivated by new database applications such as geographical databases. We formally define these notions and introduce the concept of query which generalizes queries over classical relational databases. We prove that in this context the basic properties of queries (satisfiability, containment, equivalence, etc.) are nonrecursive. We investigate the theory of finitely representable models and prove that it differs strongly from both classical model theory and finite model theory. In particular, we show that most of the well known theorems of either one fail (compactness, completeness, locality, 0/1 laws, etc.). An immediate consequence is the lack of tools to consider the definability of queries in the relational calculus over finitely representable databases. We illustrate this very challenging problem through some classical examples. We then mainly concentrate on dense order databases, and exhibit...
Computing With FirstOrder Logic
, 1995
"... We study two important extensions of firstorder logic (FO) with iteration, the fixpoint and while queries. The main result of the paper concerns the open problem of the relationship between fixpoint and while: they are the same iff ptime = pspace. These and other expressibility results are obtaine ..."
Abstract

Cited by 53 (13 self)
 Add to MetaCart
We study two important extensions of firstorder logic (FO) with iteration, the fixpoint and while queries. The main result of the paper concerns the open problem of the relationship between fixpoint and while: they are the same iff ptime = pspace. These and other expressibility results are obtained using a powerful normal form for while which shows that each while computation over an unordered domain can be reduced to a while computation over an ordered domain via a fixpoint query. The fixpoint query computes an equivalence relation on tuples which is a congruence with respect to the rest of the computation. The same technique is used to show that equivalence of tuples and structures with respect to FO formulas with bounded number of variables is definable in fixpoint. Generalizing fixpoint and while, we consider more powerful languages which model arbitrary computation interacting with a database using a finite set of FO queries. Such computation is modeled by a relational machine...
On the expressive power of database queries with intermediate types
 Journal of Computer and System Sciences
, 1991
"... The setheight of a complex object type is defined to be its level of nesting of the set construct. In a query of the complex object calculus which maps a database D to an output type T,anintermediate type is a type which is used by some variable of the query, but which is not present in D or T.Fore ..."
Abstract

Cited by 44 (2 self)
 Add to MetaCart
The setheight of a complex object type is defined to be its level of nesting of the set construct. In a query of the complex object calculus which maps a database D to an output type T,anintermediate type is a type which is used by some variable of the query, but which is not present in D or T.Foreachk, i ≥ 0 we define CALCk,i to be the family of calculus queries mapping from and to types with setheight ≤ k and using intermediate types with setheight ≤ i. In particular, CALC0,0 is the classical relational calculus, and CALC0,1 is equivalent to the family of secondorder (relational) queries. Several results concerning these families of languages are obtained. A primary focus is on the families CALC0,i, which map relations to relations. Upper and lower bounds in terms of hyperexponential time and space on the complexity of these families are provided. The CALC0,i hierarchy does not collapse with respect to expressive power. The union ∪0≤iCALC0,i is exactly the family of elementary queries, i.e., queries with hyperexponential complexity. The expressive power of queries from the complex object calculus interpreted using semantics based on the use of arbitrarily large finite or infinite set of invented values is studied. Under these semantics, the expressive power of the relational calculus is not increased, and the CALC0,i hierarchy collapses at CALC0,1. In general, queries with these semantics may not be computable. We also consider an alternative semantics which yields a family of queries equivalent to the computable queries. 1