Results 1 
4 of
4
Exploratory Experimentation: Digitallyassisted Discovery and Proof
 Chapter in ICMI Study 19: On Proof and Proving in Mathematics Education. In press
, 2010
"... Abstract The mathematical community (appropriately defined) faces a great challenge to reevaluate the role of proof in light of the power of current computer systems, the sophistication of modern mathematical computing packages, and the growing capacity to datamine on the internet. Added to those ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
(Show Context)
Abstract The mathematical community (appropriately defined) faces a great challenge to reevaluate the role of proof in light of the power of current computer systems, the sophistication of modern mathematical computing packages, and the growing capacity to datamine on the internet. Added to those are the enormous complexity of many modern mathematical results such as the Poincaré conjecture, Fermat’s last theorem, and the classification of finite simple groups. With great challenges come great opportunities. Here, I survey the current challenges and opportunities for the learning and doing of mathematics. As the prospects for inductive mathematics blossom, the need to ensure that the role of proof is properly founded remains undiminished. Much of this material was presented as a plenary talk in May
Conceptions of the Continuum
"... Abstract: A number of conceptions of the continuum are examined from the perspective of conceptual structuralism, a view of the nature of mathematics according to which mathematics emerges from humanly constructed, intersubjectively established, basic structural conceptions. This puts into question ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Abstract: A number of conceptions of the continuum are examined from the perspective of conceptual structuralism, a view of the nature of mathematics according to which mathematics emerges from humanly constructed, intersubjectively established, basic structural conceptions. This puts into question the idea from current set theory that the continuum is somehow a uniquely determined concept. Key words: the continuum, structuralism, conceptual structuralism, basic structural conceptions, Euclidean geometry, Hilbertian geometry, the real number system, settheoretical conceptions, phenomenological conceptions, foundational conceptions, physical conceptions. 1. What is the continuum? On the face of it, there are several distinct forms of the continuum as a mathematical concept: in geometry, as a straight line, in analysis as the real number system (characterized in one of several ways), and in set theory as the power set of the natural numbers and, alternatively, as the set of all infinite sequences of zeros and ones. Since it is common to refer to the continuum, in what sense are these all instances of the same concept? When one speaks of the continuum in current settheoretical