Results 1 
4 of
4
Quasismooth Derived Manifolds
"... products; for example the zeroset of a smooth function on a manifold is not necessarily a manifold, and the nontransverse intersection of submanifolds is ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
products; for example the zeroset of a smooth function on a manifold is not necessarily a manifold, and the nontransverse intersection of submanifolds is
Toposes in General Theory of Relativity
 Paper grqc/9610073. 8 Isham, C.J. Topos Theory and Consistent Histories: The Internal Logic of the Set of all. – Paper grqc/9607069
"... ..."
Conceptions of the Continuum
"... Abstract: A number of conceptions of the continuum are examined from the perspective of conceptual structuralism, a view of the nature of mathematics according to which mathematics emerges from humanly constructed, intersubjectively established, basic structural conceptions. This puts into question ..."
Abstract
 Add to MetaCart
Abstract: A number of conceptions of the continuum are examined from the perspective of conceptual structuralism, a view of the nature of mathematics according to which mathematics emerges from humanly constructed, intersubjectively established, basic structural conceptions. This puts into question the idea from current set theory that the continuum is somehow a uniquely determined concept. Key words: the continuum, structuralism, conceptual structuralism, basic structural conceptions, Euclidean geometry, Hilbertian geometry, the real number system, settheoretical conceptions, phenomenological conceptions, foundational conceptions, physical conceptions. 1. What is the continuum? On the face of it, there are several distinct forms of the continuum as a mathematical concept: in geometry, as a straight line, in analysis as the real number system (characterized in one of several ways), and in set theory as the power set of the natural numbers and, alternatively, as the set of all infinite sequences of zeros and ones. Since it is common to refer to the continuum, in what sense are these all instances of the same concept? When one speaks of the continuum in current settheoretical
Only up to isomorphism? Category theory and the . . .
"... Does category theory provide a foundation for mathematics that is autonomous with respect to the orthodox foundation in a set theory such as ZFC? We distinguish three types of autonomy: logical, conceptual, and justificatory. Focusing on a categorical theory of sets, we argue that a strong case can ..."
Abstract
 Add to MetaCart
Does category theory provide a foundation for mathematics that is autonomous with respect to the orthodox foundation in a set theory such as ZFC? We distinguish three types of autonomy: logical, conceptual, and justificatory. Focusing on a categorical theory of sets, we argue that a strong case can be made for its logical and conceptual autonomy. Its justificatory autonomy turns on whether the objects of a foundation for mathematics should be specified only up to isomorphism, as is customary in other branches of contemporary mathematics. If such a specification suffices, then a categorytheoretical approach will be highly appropriate. But if sets have a richer ‘nature ’ than is preserved under isomorphism, then such an approach will be inadequate.