Results 1  10
of
40
Domain Decomposition Algorithms With Small Overlap
, 1994
"... Numerical experiments have shown that twolevel Schwarz methods often perform very well even if the overlap between neighboring subregions is quite small. This is true to an even greater extent for a related algorithm, due to Barry Smith, where a Schwarz algorithm is applied to the reduced linear ..."
Abstract

Cited by 82 (11 self)
 Add to MetaCart
Numerical experiments have shown that twolevel Schwarz methods often perform very well even if the overlap between neighboring subregions is quite small. This is true to an even greater extent for a related algorithm, due to Barry Smith, where a Schwarz algorithm is applied to the reduced linear system of equations that remains after that the variables interior to the subregions have been eliminated. In this paper, a supporting theory is developed.
A comparison of some domain decomposition and ILU preconditioned iterative methods for nonsymmetric elliptic problems
 Numer. Linear Algebra Appl
, 1994
"... In recent years, competitive domaindecomposed preconditioned iterative techniques have beendeveloped for nonsymmetric elliptic problems. In these techniques, a large problem is divided into many smaller problems whose requirements for coordination can be controlled to allow e ective solution on par ..."
Abstract

Cited by 55 (13 self)
 Add to MetaCart
In recent years, competitive domaindecomposed preconditioned iterative techniques have beendeveloped for nonsymmetric elliptic problems. In these techniques, a large problem is divided into many smaller problems whose requirements for coordination can be controlled to allow e ective solution on parallel machines. Acentral question is how tochoose these small problems and how to arrange the order of their solution. Di erent speci cations of decomposition and solution order lead to a plethora of algorithms possessing complementary advantages and disadvantages. In this report we compare several methods, including the additive Schwarz algorithm, the classical multiplicative Schwarz algorithm, an accelerated multiplicative Schwarz algorithm, the tile algorithm, the CGK algorithm, the CSPD algorithm, and also the popular global ILUfamily of preconditioners, on some nonsymmetric or inde nite elliptic model problems discretized by nite di erence methods. The preconditioned problems are solved by the unrestarted GMRES method. A version of the accelerated multiplicative Schwarz method is a consistently good performer.
Domain decomposition algorithms for indefinite elliptic problems
 SIAM J. Sci. Stat. Comput
, 1992
"... Iterative methods for linear systems of algebraic equations arising from the finite element discretization of nonsymmetric and indefinite elliptic problems are considered. Methods previously known to work well for positive definite, symmetric problems are extended to certain nonsymmetric problems, w ..."
Abstract

Cited by 48 (16 self)
 Add to MetaCart
Iterative methods for linear systems of algebraic equations arising from the finite element discretization of nonsymmetric and indefinite elliptic problems are considered. Methods previously known to work well for positive definite, symmetric problems are extended to certain nonsymmetric problems, which can also have some eigenvalues in the left half plane. We first consider an additive Schwarz method applied to linear, second order, symmetric or nonsymmetric, indefinite elliptic boundary value problems in two and three dimensions. An alternative linear system, which has the same solution as the original problem, is derived and this system is then solved by using GMRES, an iterative method of conjugate gradient type. In each iteration step, a coarse mesh finite element problem and a number of local problems are solved on small, overlapping subregions into which the original region is subdivided. We show that the rate of convergence is independent of the number of degrees of freedom and the number of local problems if the coarse mesh is fine enough. The performance of the method in two dimensions is illustrated by results of several numerical experiments. We also consider two other iterative method for solving the same class of elliptic problems in two dimensions. Using an observation of Dryja and Widlund, we show that the rate of convergence of certain iterative substructuring methods deteriorates only quite slowly when the local problems increase in size. A similar result is established for Yserentant’s hierarchical basis method.
Additive Schwarz algorithms for parabolic convectiondiffusion equations
 Numer. Math
, 1991
"... In this paper, we consider the solution of linear systems of algebraic equations that arise from parabolic finite element problems. We introduce three additive Schwarz type domain decomposition methods for general, not necessarily selfadjoint, linear, second order, parabolic partial differential equ ..."
Abstract

Cited by 41 (6 self)
 Add to MetaCart
In this paper, we consider the solution of linear systems of algebraic equations that arise from parabolic finite element problems. We introduce three additive Schwarz type domain decomposition methods for general, not necessarily selfadjoint, linear, second order, parabolic partial differential equations and also study the convergence rates of these algorithms. The resulting preconditioned linear system of equations is solved by the generalized minimal residual method. Numerical results are also reported. Key words Schwarz’s alternating method, domain decomposition, parabolic convectiondiffusion equation, finite elements. AMS(MOS) subject classifications. 65N30, 65F10 1
A nonoverlapping domain decomposition method for Maxwell’s equations in three dimensions
 SIAM J. Numer. Anal
"... Abstract. We propose a substructuring preconditioner for solving threedimensional elliptic equations with strongly discontinuous coefficients. The new preconditioner can be viewed as a variant of the classical substructuring preconditioner proposed by Bramble, Pasiack and Schatz (1989), but with muc ..."
Abstract

Cited by 35 (10 self)
 Add to MetaCart
Abstract. We propose a substructuring preconditioner for solving threedimensional elliptic equations with strongly discontinuous coefficients. The new preconditioner can be viewed as a variant of the classical substructuring preconditioner proposed by Bramble, Pasiack and Schatz (1989), but with much simpler coarse solvers. Though the condition number of the preconditioned system may not have a good bound, we are able to show that the convergence rate of the PCG method with such substructuring preconditioner is nearly optimal, and also robust with respect to the (possibly large) jumps of the coefficient in the elliptic equation. 1.
Some Schwarz Methods For Symmetric And Nonsymmetric Elliptic Problems
 Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations
, 1992
"... . This paper begins with an introduction to additive and multiplicative Schwarz methods. A twolevel method is then reviewed and a new result on its rate of convergence is established for the case when the overlap is small. Recent results by Xuejun Zhang, on multilevel Schwarz methods, are formulat ..."
Abstract

Cited by 35 (2 self)
 Add to MetaCart
. This paper begins with an introduction to additive and multiplicative Schwarz methods. A twolevel method is then reviewed and a new result on its rate of convergence is established for the case when the overlap is small. Recent results by Xuejun Zhang, on multilevel Schwarz methods, are formulated and discussed. The paper is concluded with a discussion of recent joint results with XiaoChuan Cai on nonsymmetric and indefinite problems. Key Words. domain decomposition, Schwarz methods, finite elements, nonsymmetric and indefinite elliptic problems AMS(MOS) subject classifications. 65F10, 65N30 1. Introduction. Over the last few years, a general theory has been developed for the study of additive and multiplicative Schwarz methods. Many domain decomposition and certain multigrid methods can now be successfully analyzed inside this framework. Early work by P.L. Lions [23], [24] gave an important impetus to this effort. The additive Schwarz methods were then developed by Dryja and ...
Some Nonoverlapping Domain Decomposition Methods
, 1998
"... . The purpose of this paper is to give a unified investigation of a class of nonoverlapping domain decomposition methods for solving secondorder elliptic problems in two and three dimensions. The methods under scrutiny fall into two major categories: the substructuringtype methods and the Neumann ..."
Abstract

Cited by 35 (6 self)
 Add to MetaCart
. The purpose of this paper is to give a unified investigation of a class of nonoverlapping domain decomposition methods for solving secondorder elliptic problems in two and three dimensions. The methods under scrutiny fall into two major categories: the substructuringtype methods and the NeumannNeumanntype methods. The basic framework used for analysis is the parallel subspace correction method or additive Schwarz method, and other technical tools include localglobal and globallocal techniques. The analyses for both two and threedimensional cases are carried out simultaneously. Some internal relationships between various algorithms are observed and several new variants of the algorithms are also derived. Key words. nonoverlapping domain decomposition, Schur complement, localglobal and globallocal techniques, jumps in coe#cients, substructuring, NeumannNeumann, balancing methods AMS subject classifications. 65N30, 65N55, 65F10 PII. S0036144596306800 1. Introduction. T...
Weighted Max Norms, Splittings, and Overlapping Additive Schwarz Iterations
 NUMERISCHE MATHEMATIK
, 1998
"... Weighted maxnorm bounds are obtained for Algebraic Additive Schwarz Iterations with overlapping blocks for the solution of Ax = b, when the coefficient matrix A is an Mmatrix. The case of inexact local solvers is also covered. These bounds are analogous to those that exist using Anorms when the m ..."
Abstract

Cited by 33 (18 self)
 Add to MetaCart
Weighted maxnorm bounds are obtained for Algebraic Additive Schwarz Iterations with overlapping blocks for the solution of Ax = b, when the coefficient matrix A is an Mmatrix. The case of inexact local solvers is also covered. These bounds are analogous to those that exist using Anorms when the matrix A is symmetric positive definite. A new theorem concerning P regular splittings is presented, which provides a useful tool for the Anorm bounds. Furthermore, a theory of splittings is developed to represent Algebraic Additive Schwarz Iterations. This representation makes a connection with multisplitting methods. With this representation, and using a comparison theorem, it is shown that a coarse grid correction improves the convergence of Additive Schwarz Iterations when measured in weighted max norm.
Algebraic theory of multiplicative Schwarz methods
 NUMER. MATH.
, 2001
"... The convergence of multiplicative Schwarztype methods for solving linear systems when the coefficient matrix is either a nonsingular Mmatrix or a symmetric positive definite matrix is studied using classical and new results from the theory of splittings. The effect on convergence of algorithmic ..."
Abstract

Cited by 28 (21 self)
 Add to MetaCart
The convergence of multiplicative Schwarztype methods for solving linear systems when the coefficient matrix is either a nonsingular Mmatrix or a symmetric positive definite matrix is studied using classical and new results from the theory of splittings. The effect on convergence of algorithmic parameters such as the number of subdomains, the amount of overlap, the result of inexact local solves and of “coarse grid” corrections (global coarse solves) is analyzed in an algebraic setting. Results on algebraic additive Schwarz are also included.
On The Spectra Of Sums Of Orthogonal Projections With Applications To Parallel Computing
, 1991
"... Many parallel iterative algorithms for solving symmetric, positive definite problems proceed by solving in each iteration, a number of independent systems on subspaces. The convergence of such methods is determined by the spectrum of the sums of orthogonal projections on those subspaces, while the c ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
Many parallel iterative algorithms for solving symmetric, positive definite problems proceed by solving in each iteration, a number of independent systems on subspaces. The convergence of such methods is determined by the spectrum of the sums of orthogonal projections on those subspaces, while the convergence of a related sequential method is determined by the spectrum of the product of complementary projections. We study spectral properties of sums of orthogonal projections and in the case of two projections, characterize the spectrum of the sum completely in terms of the spectrum of the product.