Results 1 
1 of
1
Dependency networks for inference, collaborative filtering, and data visualization
 Journal of Machine Learning Research
"... We describe a graphical model for probabilistic relationshipsan alternative tothe Bayesian networkcalled a dependency network. The graph of a dependency network, unlike aBayesian network, is potentially cyclic. The probability component of a dependency network, like aBayesian network, is a set of ..."
Abstract

Cited by 207 (11 self)
 Add to MetaCart
(Show Context)
We describe a graphical model for probabilistic relationshipsan alternative tothe Bayesian networkcalled a dependency network. The graph of a dependency network, unlike aBayesian network, is potentially cyclic. The probability component of a dependency network, like aBayesian network, is a set of conditional distributions, one for each nodegiven its parents. We identify several basic properties of this representation and describe a computationally e cient procedure for learning the graph and probability components from data. We describe the application of this representation to probabilistic inference, collaborative ltering (the task of predicting preferences), and the visualization of acausal predictive relationships.