Results 1 -
3 of
3
Attribute and Simile Classifiers for Face Verification
- In IEEE International Conference on Computer Vision (ICCV
, 2009
"... We present two novel methods for face verification. Our first method – “attribute ” classifiers – uses binary classifiers trained to recognize the presence or absence of describable aspects of visual appearance (e.g., gender, race, and age). Our second method – “simile ” classifiers – removes the ma ..."
Abstract
-
Cited by 327 (15 self)
- Add to MetaCart
We present two novel methods for face verification. Our first method – “attribute ” classifiers – uses binary classifiers trained to recognize the presence or absence of describable aspects of visual appearance (e.g., gender, race, and age). Our second method – “simile ” classifiers – removes the manual labeling required for attribute classification and instead learns the similarity of faces, or regions of faces, to specific reference people. Neither method requires costly, often brittle, alignment between image pairs; yet, both methods produce compact visual descriptions, and work on real-world images. Furthermore, both the attribute and simile classifiers improve on the current state-of-the-art for the LFW data set, reducing the error rates compared to the current best by 23.92 % and 26.34%, respectively, and 31.68 % when combined. For further testing across pose, illumination, and expression, we introduce a new data set – termed PubFig – of real-world images of public figures (celebrities and politicians) acquired from the internet. This data set is both larger (60,000 images) and deeper (300 images per individual) than existing data sets of its kind. Finally, we present an evaluation of human performance. 1.
Describable Visual Attributes for Face Verification and Image Search
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
"... We introduce the use ofdescribable visual attributes for face verification and image search. Describable visual attributes are labels that can be given to an image to describe its appearance. This paper focuses on images of faces and the attributes used to describe them, although the concepts also a ..."
Abstract
-
Cited by 61 (7 self)
- Add to MetaCart
We introduce the use ofdescribable visual attributes for face verification and image search. Describable visual attributes are labels that can be given to an image to describe its appearance. This paper focuses on images of faces and the attributes used to describe them, although the concepts also apply to other domains. Examples of face attributes include gender, age, jaw shape, nose size, etc. The advantages of an attribute-based representation for vision tasks are manifold: they can be composed to create descriptions at various levels of specificity; they are generalizable, as they can be learned once and then applied to recognize new objects or categories without any further training; and they are efficient, possibly requiring exponentially fewer attributes (and training data) than explicitly naming each category. We show how one can create and label large datasets of real-world images to train classifiers which measure the presence, absence, or degree to which an attribute is expressed in images. These classifiers can then automatically label new images. We demonstrate the current effectiveness – and explore the future potential – of using attributes for face verification and image search via human and computational experiments. Finally, we introduce two new face datasets, named FaceTracer and PubFig, with labeled attributes and identities, respectively.
AGE REGRESSION FROM FACES USING RANDOM FORESTS
"... Predicting the age of a person through face image analysis holds the potential to drive an extensive array of real world applications from human computer interaction and security to advertising and multimedia. In this paper the first application of the random forest for age regression is proposed. T ..."
Abstract
-
Cited by 12 (3 self)
- Add to MetaCart
(Show Context)
Predicting the age of a person through face image analysis holds the potential to drive an extensive array of real world applications from human computer interaction and security to advertising and multimedia. In this paper the first application of the random forest for age regression is proposed. This method offers the advantage of few parameters that are relatively easy to initialize. Our method learns salient anthropometric quantities without a prior model. Significant implications include a dramatic reduction in training time while maintaining high regression accuracy throughout human development. Index Terms age regression, random forest, learning 1.