Results 1 
4 of
4
Stabilization of model categories
, 1998
"... monoidal structure which is compatible with the model structure. Given a monoidal model category, we consider the homotopy theory of modules over a given monoid and the homotopy theory of monoids. We make minimal assumptions on our model categories; our results therefore are more general, yet weaker ..."
Abstract

Cited by 341 (12 self)
 Add to MetaCart
(Show Context)
monoidal structure which is compatible with the model structure. Given a monoidal model category, we consider the homotopy theory of modules over a given monoid and the homotopy theory of monoids. We make minimal assumptions on our model categories; our results therefore are more general, yet weaker, than the results of [10]. In particular, our results apply to the monoidal model category of topological symmetric spectra [7].
Monoidal uniqueness of stable homotopy theory
 Adv. in Math. 160
, 2001
"... Abstract. We show that the monoidal product on the stable homotopy category of spectra is essentially unique. This strengthens work of this author with Schwede on the uniqueness of models of the stable homotopy theory of spectra. As an application we show that with an added assumption about underlyi ..."
Abstract

Cited by 14 (8 self)
 Add to MetaCart
Abstract. We show that the monoidal product on the stable homotopy category of spectra is essentially unique. This strengthens work of this author with Schwede on the uniqueness of models of the stable homotopy theory of spectra. As an application we show that with an added assumption about underlying model structures Margolis ’ axioms uniquely determine the stable homotopy category of spectra up to monoidal equivalence. Also, the equivalences constructed here give a unified construction of the known equivalences of the various symmetric monoidal categories of spectra (Smodules, Wspaces, orthogonal spectra, simplicial functors) with symmetric spectra. The equivalences of modules, algebras and commutative algebras in these categories are also considered. 1.
Structure theorems for homotopy pushouts I: contractible pushouts
, 1996
"... How to cite this article: ..."
(Show Context)