Results 1  10
of
39
AdHoc Networks Beyond Unit Disk Graphs
, 2003
"... In this paper we study a model for adhoc networks close enough to reality as to represent existing networks, being at the same time concise enough to promote strong theoretical results. The Quasi Unit Disk Graph model contains all edges shorter than a parameter d between 0 and 1 and no edges longer ..."
Abstract

Cited by 105 (10 self)
 Add to MetaCart
In this paper we study a model for adhoc networks close enough to reality as to represent existing networks, being at the same time concise enough to promote strong theoretical results. The Quasi Unit Disk Graph model contains all edges shorter than a parameter d between 0 and 1 and no edges longer than 1. We show that  in comparison to the cost known on Unit Disk Graphs  the complexity results in this model contain the additional factor 1/d&sup2;. We prove that in Quasi Unit Disk Graphs flooding is an asymptotically messageoptimal routing technique, provide a geometric routing algorithm being more efficient above all in dense networks, and show that classic geometric routing is possible with the same performance guarantees as for Unit Disk Graphs if d 1/ # 2.
A LogStar Distributed Maximal Independent Set Algorithm . . .
 PODC'08
, 2008
"... We present a novel distributed algorithm for the maximal independent set (MIS) problem. On growthbounded graphs (GBG) our deterministic algorithm finishes in O(log ∗ n) time, n being the number of nodes. In light of Linial’s Ω(log ∗ n) lower bound our algorithm is asymptotically optimal. Our algori ..."
Abstract

Cited by 48 (15 self)
 Add to MetaCart
We present a novel distributed algorithm for the maximal independent set (MIS) problem. On growthbounded graphs (GBG) our deterministic algorithm finishes in O(log ∗ n) time, n being the number of nodes. In light of Linial’s Ω(log ∗ n) lower bound our algorithm is asymptotically optimal. Our algorithm answers prominent open problems in the ad hoc/sensor network domain. For instance, it solves the connected dominating set problem for unit disk graphs in O(log ∗ n) time, exponentially faster than the stateoftheart algorithm. With a new extension our algorithm also computes a δ + 1 coloring in O(log ∗ n) time, where δ is the maximum degree of the graph.
Modeling sensor networks
, 2008
"... In order to develop algorithms for sensor networks and in order to give mathematical correctness and performance proofs, models for various aspects of sensor networks are needed. This chapter presents and discusses currently used models for sensor networks. Generally, finding good models is a challe ..."
Abstract

Cited by 28 (5 self)
 Add to MetaCart
In order to develop algorithms for sensor networks and in order to give mathematical correctness and performance proofs, models for various aspects of sensor networks are needed. This chapter presents and discusses currently used models for sensor networks. Generally, finding good models is a challenging task. On the one hand, a
Sublogarithmic Distributed MIS Algorithm for Sparse Graphs using NashWilliams Decomposition
 In Journal of Distributed Computing Special Issue of selected papers from PODC
, 2008
"... We study the distributed maximal independent set (henceforth, MIS) problem on sparse graphs. Currently, there are known algorithms with a sublogarithmic running time for this problem on oriented trees and graphs of bounded degrees. We devise the first sublogarithmic algorithm for computing MIS on gr ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
We study the distributed maximal independent set (henceforth, MIS) problem on sparse graphs. Currently, there are known algorithms with a sublogarithmic running time for this problem on oriented trees and graphs of bounded degrees. We devise the first sublogarithmic algorithm for computing MIS on graphs of bounded arboricity. This is a large family of graphs that includes graphs of bounded degree, planar graphs, graphs of bounded genus, graphs of bounded treewidth, graphs that exclude a fixed minor, and many other graphs. We also devise efficient algorithms for coloring graphs from these families. These results are achieved by the following technique that may be of independent interest. Our algorithm starts with computing a certain graphtheoretic structure, called NashWilliams forestsdecomposition. Then this structure is used to compute the MIS or coloring. Our results demonstrate that this methodology is very powerful. Finally, we show nearlytight lower bounds on the running time of any distributed algorithm for computing a forestsdecomposition.
The Abstract MAC Layer
, 2009
"... A diversity of possible communication assumptions complicates the study of algorithms and lower bounds for radio networks. We address this problem by defining an Abstract MAC Layer. This service provides reliable local broadcast communication, with timing guarantees stated in terms of a collection o ..."
Abstract

Cited by 13 (11 self)
 Add to MetaCart
A diversity of possible communication assumptions complicates the study of algorithms and lower bounds for radio networks. We address this problem by defining an Abstract MAC Layer. This service provides reliable local broadcast communication, with timing guarantees stated in terms of a collection of abstract delay functions applied to the relevant contention. Algorithm designers can analyze their algorithms in terms of these functions, independently of specific channel behavior. Concrete implementations of the Abstract MAC Layer over basic radio network models generate concrete definitions for these delay functions, automatically adapting bounds proven for the abstract service to bounds for the specific radio network under consideration. To illustrate this approach, we use the Abstract MAC Layer to study the new problem of MultiMessage Broadcast, a generalization of standard singlemessage broadcast, in which any number of messages arrive at any processes at any times. We present and analyze two algorithms for MultiMessage Broadcast in static networks: a simple greedy algorithm and one that uses regional leaders. We indicate how these results can be extended to mobile networks.
T.: Distributed approximation of capacitated dominating sets
 In: Proc. 19th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA
, 2007
"... We study local, distributed algorithms for the capacitated minimum dominating set (CapMDS) problem, which arises in various distributed network applications. Given a network graph G = (V, E), and a capacity cap(v) ∈ N for each node v ∈ V, the CapMDS problem asks for a subset S ⊆ V of minimal cardin ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
We study local, distributed algorithms for the capacitated minimum dominating set (CapMDS) problem, which arises in various distributed network applications. Given a network graph G = (V, E), and a capacity cap(v) ∈ N for each node v ∈ V, the CapMDS problem asks for a subset S ⊆ V of minimal cardinality, such that every network node not in S is covered by at least one neighbor in S, and every node v ∈ S covers at most cap(v) of its neighbors. We prove that in general graphs and even with uniform capacities, the problem is inherently nonlocal, i.e., every distributed algorithm achieving a nontrivial approximation ratio must have a time complexity that essentially grows linearly with the network diameter. On the other hand, if for some parameter ɛ> 0, capacities can be violated by a factor of 1 + ɛ, CapMDS becomes much more local. Particularly, based on a novel distributed randomized rounding technique, we present a distributed bicriteria algorithm that achieves an O(log ∆)approximation in time O(log 3 n + log(n)/ɛ), where n and ∆ denote the number of nodes and the maximal degree in G, respectively. Finally, we prove that in geometric network graphs typically arising in wireless settings, the uniform problem can be approximated within a constant factor in logarithmic time, whereas the nonuniform problem remains entirely nonlocal.
Distributed (∆ + 1)coloring in linear (in ∆) time
 In Proc. 41st Annual ACM Symposium on Theory of Computing (STOC
, 2009
"... The distributed ( ∆ + 1)coloring problem is one of most fundamental and wellstudied problems in Distributed Algorithms. Starting with the work of Cole and Vishkin in 86, there was a long line of gradually improving algorithms published. The current stateoftheart running time is O( ∆ log ∆+log ∗ ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
The distributed ( ∆ + 1)coloring problem is one of most fundamental and wellstudied problems in Distributed Algorithms. Starting with the work of Cole and Vishkin in 86, there was a long line of gradually improving algorithms published. The current stateoftheart running time is O( ∆ log ∆+log ∗ n), due to Kuhn and Wattenhofer, PODC’06. Linial (FOCS’87) has proved a lower bound of 1 2 log ∗ n for the problem, and Szegedy and Vishwanathan (STOC’93) provided a heuristic argument that shows that algorithms from a wide family of locally iterative algorithms are unlikely to achieve running time smaller than Θ( ∆ log ∆). We present a deterministic (∆+1)coloring distributed algorithm with running time O(∆)+ 1
What can be approximated locally?  Case study: dominating sets in planar graphs
 SPAA'08
, 2008
"... Whether local algorithms can compute constant approximations of NPhard problems is of both practical and theoretical interest. So far, no algorithms achieving this goal are known, as either the approximation ratio or the running time exceed O(1), or the nodes are provided with nontrivial additiona ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
Whether local algorithms can compute constant approximations of NPhard problems is of both practical and theoretical interest. So far, no algorithms achieving this goal are known, as either the approximation ratio or the running time exceed O(1), or the nodes are provided with nontrivial additional information. In this paper, we present the first distributed algorithm approximating a minimum dominating set on a planar graph within a constant factor in constant time. Moreover, the nodes do not need any additional information.
Good quality virtual realization of unit ball graphs
 of Lecture Notes in Computer Science
, 2007
"... The quality of an embedding Φ: V ↦ → R 2 of a graph G = (V, E) into the Euclidean plane is the ratio of max{u,v}∈E Φ(u) − Φ(v)2 to min{u,v}�∈E Φ(u) − Φ(v)2. Given a graph G = (V, E), that is known to be a unit ball graph in fixed dimensional Euclidean space R d, we seek algorithms to compu ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
The quality of an embedding Φ: V ↦ → R 2 of a graph G = (V, E) into the Euclidean plane is the ratio of max{u,v}∈E Φ(u) − Φ(v)2 to min{u,v}�∈E Φ(u) − Φ(v)2. Given a graph G = (V, E), that is known to be a unit ball graph in fixed dimensional Euclidean space R d, we seek algorithms to compute an embedding Φ: V ↦ → R 2 of best (smallest) quality. Note that G comes with no associated geometric information and in this setting, related problems such as recognizing if G is a unit disk graph (UDG), are NPhard. While any connected unit disk graph (UDG) has a 2dimensional embedding with quality between 1/2 and 1, as far as we know, Vempala’s random projection approach (FOCS 1998) provides the best quality bound of O(log 3 n · √ log log n) for this problem. This paper presents a simple, combinatorial algorithm for computing a O(log 2.5 n)quality 2dimensional embedding of a given graph, that is known to be a UBG in fixed dimensional Euclidean space R d. If the embedding is allowed to reside in higher dimensional space, we obtain improved results: a quality2 embedding in R O(d log d). The first step of our algorithm constructs a “growthrestricted approximation ” of the given UBG. While such a construction is trivial if the UBG comes with a geometric representation, we are not aware of any other algorithm that can perform this step without geometric information. Construction of a growthrestricted approximation permits us to bypass the standard and costly technique of solving a linear program with exponentially many “spreading constraints. ” As a side effect of our construction, we get a constantfactor approximation to the minimum clique cover problem for UBGs, described without geometry. The second step of our algorithm combines the probabilistic decomposition of growthrestricted graphs due to Lee and Krauthgamer (STOC 2003) with Rao’s embedding algorithm for planar graphs (SoCG 1999) to obtain a (k, O ( √ log n))volume respecting embedding of growthrestricted graphs. Our problem is a version of the well known localization problem in wireless sensor networks, in which network nodes are required to compute virtual 2dimensional Euclidean coordinates given little or (as in our case) no geometric information.
Sensor networks continue to puzzle: Selected open problems
 In Proc. 9th Internat. Conf. Distributed Computing and Networking (ICDCN
, 2008
"... Abstract. While several important problems in the field of sensor networks have already been tackled, there is still a wide range of challenging, open problems that merit further attention. We present five theoretical problems that we believe to be essential to understanding sensor networks. The goa ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
Abstract. While several important problems in the field of sensor networks have already been tackled, there is still a wide range of challenging, open problems that merit further attention. We present five theoretical problems that we believe to be essential to understanding sensor networks. The goal of this work is both to summarize the current state of research and, by calling attention to these fundamental problems, to spark interest in the networking community to attend to these and related problems in sensor networks.